Traumatic brain injury (TBI) impairs autoregulation of cerebral blood flow, which contributes to the development of secondary brain injury, increasing mortality of patients. Impairment of pressure-induced myogenic constriction of cerebral arteries plays a critical role in autoregulatory dysfunction; however, the underlying cellular and molecular mechanisms are not well understood. To determine the role of mitochondria-derived HO and large-conductance calcium-activated potassium channels (BK) in myogenic autoregulatory dysfunction, middle cerebral arteries (MCAs) were isolated from rats with severe weight drop-impact acceleration brain injury. We found that 24 h post-TBI MCAs exhibited impaired myogenic constriction, which was restored by treatment with a mitochondria-targeted antioxidant (mitoTEMPO), by scavenging of HO (polyethylene glycol [PEG]-catalase) and by blocking both BK channels (paxilline) and transient receptor potential cation channel subfamily V member 4 (TRPV4) channels (HC 067047). Further, exogenous administration of HO elicited significant dilation of MCAs, which was inhibited by blocking either BK or TRPV4 channels. Vasodilation induced by the TRPV4 agonist GSK1016790A was inhibited by paxilline. In cultured vascular smooth muscle cells HO activated BK currents, which were inhibited by blockade of TRPV4 channels. Collectively, our results suggest that after TBI, excessive mitochondria-derived HO activates BK channels via a TRPV4-dependent pathway in the vascular smooth muscle cells, which impairs pressure-induced constriction of cerebral arteries. Future studies should elucidate the therapeutic potential of pharmacological targeting of this pathway in TBI, to restore autoregulatory function in order to prevent secondary brain damage and decrease mortality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5865628 | PMC |
http://dx.doi.org/10.1089/neu.2017.5056 | DOI Listing |
Medicine (Baltimore)
January 2025
Nerve Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.
Ischemic stroke is caused by blockage of blood vessels in brain, affecting normal function. The roles of Signal Transformer and Activator of Transcription 1 (STAT1), CASP8, and MYD88 in ischemic stroke and its care are unclear. The ischemic stroke datasets GSE16561 and GSE180470 were found from the Gene Expression Omnibus database.
View Article and Find Full Text PDFJ Neurosurg Spine
January 2025
3Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona.
G3 (Bethesda)
January 2025
Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093.
The conserved MAP3K DLKs are widely known for their functions in synapse formation, axonal regeneration and degeneration, and neuronal survival, notably under traumatic injury and chronic disease conditions. In contrast, their roles in other neuronal compartments are much less explored. Through an unbiased forward genetic screening in C.
View Article and Find Full Text PDFJ Neuroimaging
January 2025
Department of Neurology, Baylor College of Medicine, Houston, Texas, USA.
Intracranial pressure (ICP) monitoring is a cornerstone of neurocritical care in managing severe brain injury. However, current invasive ICP monitoring methods carry significant risks, including infection and intracranial hemorrhage, and are contraindicated in certain clinical situations. Additionally, these methods are not universally available.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
Inflammation is a crucial factor in intracerebral hemorrhage (ICH) pathophysiology, but specific inflammatory biomarkers in ICH patients remain unclear. This study aimed to identify novel circulating inflammatory biomarkers for improved ICH prediction and diagnosis. We profiled expression levels of 92 cardiovascular disease related proteins in plasma from 26 matched ICH patients and controls using Olink technology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!