AI Article Synopsis

  • Polluted sediment poses significant risks to aquatic life, necessitating both in situ (on-site) and ex situ (off-site) remediation techniques.
  • Capping with activated carbon is the most commonly applied method, but effectiveness varies based on contamination levels, carbon amounts, and the biological models used for testing.
  • Current knowledge on the toxicity of various remediation methods, particularly less-studied agents like zerovalent iron, is limited, highlighting the need for careful assessment of environmental impacts before and after treatment.

Article Abstract

Polluted sediment represents a great problem for aquantic environments with potential direct acute and chronic effects for the biota and can be tackled with both in situ and ex situ treatments. Once dredging activities are not compulsory, sediment can be kept in place and managed with techniques involving the use of amendment and/or capping. Before their application, the assessment of their potential impact to the target environment cannot ignore the safe-by-design approach. The role of toxicity in in situ sediment remediation was reviewed discussing about how it can be used for the selection of amendments and the monitoring of treatment technologies. Results evidenced that capping technology coupled to activated carbon (AC) is the most frequently applied approach with effects varying according to the rate of contamination in treated sediment, the amount of AC used (% v/v), and target biological models considered. Little data are available for zerovalent iron as well as other minor amending agents such as hematite, natural zeolite, biopolymers and organoclays. Current (eco-)toxicological information for in situ sediment remediation technologies is fragmentary and incomplete or entirely missing, making also the interpretation of existing data quite challenging. In situ sediment remediation represents an interesting potentially effective approach for polluted sediment recovering. As its application in some lab-based and field studies reported to induce negative effects for target organisms, amendments and capping agents must be attentively evaluated for short- and long-term environmental effects, also in the perspective of the remediated site monitoring and maintenance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2017.11.229DOI Listing

Publication Analysis

Top Keywords

sediment remediation
16
situ sediment
12
sediment
8
remediation technologies
8
polluted sediment
8
situ
6
toxicity assessment
4
assessment application
4
application situ
4
situ contaminated
4

Similar Publications

Manganese-modified reed biochar decreased nutrients and methane release from algae debris-contaminated sediments.

Environ Res

January 2025

Jiangsu Water Conservancy Construction Engineering co.,ltd, Yangzhou, P. R. China.

Biochar is one of the ways for carbon storage, pollution control and biosolid reuse. Aquatic plant reeds are widely used in nutrient removal in wetlands and have huge biomass. Nonetheless, little is known regarding the effects of reed-based biochar on sediments.

View Article and Find Full Text PDF

Catalytic degradation of organic pollutants in aqueous systems: A comprehensive review of peroxyacetic acid-based advanced oxidation processes.

J Environ Manage

January 2025

College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China. Electronic address:

Peroxyacetic acid (PAA)-based advanced oxidation processes (AOPs) have emerged as a promising treatment method to decontaminate organic pollutants. This review thoroughly evaluated the use of PAA-based AOPs, including their synthesis techniques, physicochemical features, and reaction pathways with pollutants. It also illustrated two primary channels: free radical pathways and non-radical pathways during the PAA activation processes and introduced various methods for activating PAA, including energy radiation, transition metal catalysis, and carbon catalysis.

View Article and Find Full Text PDF

Environmental impact of an acid-forming alum shale waste rock legacy site in Norway.

Environ Sci Process Impacts

January 2025

Environmental Chemistry Section, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway.

Alum shale formations in Scandinavia are generally enriched in uranium (U) and, when exposed to air and water, may produce acidic rock drainage (ARD), releasing potentially harmful elements into the environment. Taraldrud is a legacy site in southeast Norway where approx. 51 000 m of alum shale was deposited in the 1980s-1990s.

View Article and Find Full Text PDF

Immobilization or mobilization of heavy metal(loid)s in lake sediment-water interface: Roles of coupled transformation between iron (oxyhydr)oxides and natural organic matter.

Sci Total Environ

December 2024

Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China. Electronic address:

Iron (Fe) (oxyhydr)oxides and natural organic matter (NOM) are active substances ubiquitously found in sediments. Their coupled transformation plays a crucial role in the fate and release risk of heavy metal(loid)s (HMs) in lake sediments. Therefore, it is essential to systematically obtain relevant knowledge to elucidate their potential mechanism, and whether HMs provide immobilization or mobilization effect in this ternary system.

View Article and Find Full Text PDF

Treatment wetlands have emerged as a potential remediation option for oil-sands process affected waters (OSPW) which contains a suite of organic and inorganic constituents of potential concern. The aim of this study was to evaluate the fate of metals in a treatment wetland exposed to OSPW. Data was collected over three operational seasons testing freshwater and OSPW inputs at the Kearl Treatment Wetland in northern Alberta.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!