Many biological objects are barely distinguished with the brightfield microscope because they appear transparent, translucent and colourless. One simple way to make such specimens visible without compromising contrast and resolution is by controlling the amount and the directionality of the illumination light. Oblique illumination is an old technique described by many scientists and microscopists that however has been largely neglected in favour of other alternative methods. Oblique lighting (OL) is created by illuminating the sample by only a portion of the light coming from the condenser. If properly used it can improve the resolution and contrast of transparent specimens such as diatoms. In this paper a quantitative evaluation of OL in brigthfield microscopy is presented. Several feature descriptors were selected for characterising contrast and sharpness showing that in general OL provides better performance for distinguishing minute details compared to other lighting modalities. Oblique lighting is capable to produce directionally shadowed differential contrast images allowing to observe phase details in a similar way to differential contrast images (DIC) but at lower cost. The main advantage of OL is that the resolution of the light microscope can be increased by effectively doubling the angular aperture. OL appears as a cost-effective technique both for the amateur and professional scientist that can be used as a replacement of DIC or phase contrast when resources are scarce.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micron.2017.11.006 | DOI Listing |
Dent J (Basel)
December 2024
Department of Teeth and Dental Arches Morphology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania.
Polymerization shrinkage of composite resins affects the marginal closure of direct dental restorations. It is responsible for developing secondary caries and indirectly affects the survival rate of restorations. This study aims to investigate the null hypothesis, which states that there are no significant differences in the marginal microleakage of Class II restorations when examined in vitro using different dental adhesives, whether the restoration material used is a composite with glass fiber reinforcement or not.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Bioengineering, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
High-resolution optical microscopy, particularly super-resolution localization microscopy, requires precise real-time drift correction to maintain constant focus at nanoscale precision during the prolonged data acquisition. Existing methods, such as fiducial marker tracking, reflection monitoring, and bright-field image correlation, each provide certain advantages but are limited in their broad applicability. In this work, a versatile and robust drift correction technique is presented for single-molecule localization-based super-resolution microscopy.
View Article and Find Full Text PDFArXiv
December 2024
Department of Imaging Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands.
Three-Dimensional Polarized Light Imaging (3D-PLI) and Computational Scattered Light Imaging (ComSLI) map dense nerve fibers in brain sections with micrometer resolution using visible light. 3D-PLI reconstructs single fiber orientations, while ComSLI captures multiple directions per pixel, offering deep insights into brain tissue structure. Here, we introduce the Scattering Polarimeter, a high-speed correlative microscope to leverage the strengths of both methods.
View Article and Find Full Text PDFBiomed Opt Express
December 2024
Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
Rapid three-dimensional imaging over extended fields of view (FOVs) is crucial to the study of organism-wide systems and biological processes . Selective-plane illumination microscopy (SPIM) is a powerful method for high spatio-temporal resolution imaging of such biological specimens. However, typical SPIM implementations preclude conventional sample mounting and have anisotropic imaging performance, in particular when designed for large FOVs over 1 mm diameter.
View Article and Find Full Text PDFbioRxiv
December 2024
Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
Light-sheet fluorescence microscopy (LSFM) has demonstrated great potential in the life sciences owing to its efficient volumetric imaging capabilities. For long term imaging, the light-sheet typically needs to be stabilized to the detection focal plane for the best imaging results. Current light-sheet stabilization methods rely on fluorescence emission from the sample, which may interrupt the scientific imaging and add to sample photobleaching.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!