Fabrication of nanographene shows a promising route for production of designed porous carbons, which is indispensable for highly efficient molecular separation and energy storage applications. This process requires a better understanding of the mechanical properties of nanographene in their aggregated structure. We studied the structural and mechanical properties of nanographene monoliths compressed at 43 MPa over different times from 3 to 25 h. While in monoliths compressed over shorter time adsorption isotherms of Ar at 87 K or N at 77 K exhibited a prominent hysteresis due to presence of predominant mesopores, compression for long time induces a low pressure hysteresis. On the other hand, compression for 25 h increases the microporosity evaluated by Ar adsorption, not by N adsorption, indicating that 25 h compression rearranges the nanographene stacking structure to produce ultramicropores that can be accessible only for Ar. TEM, X-ray diffraction, and Raman spectroscopic studies indicated that the compression for 25 h unfolds double-bent-like structures, relaxing the unstable nanographene stacked structure formed on the initial compression without nanographene sheets collapse. This behavior stems from the highly elastic nature of the nanographenes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.7b03328DOI Listing

Publication Analysis

Top Keywords

mechanical properties
8
properties nanographene
8
monoliths compressed
8
nanographene
6
compression
5
nanoporosity change
4
change elastic
4
elastic relaxation
4
relaxation partially
4
partially folded
4

Similar Publications

Low-Impedance Hybrid Carbon Structures on SiO: A Sequential Gas-Phase Coating Approach.

Small Methods

January 2025

BCMaterials, Basque Centre for Materials, Applications and Nanostructures; UPV/EHU Science Park, Leioa, 48940, Spain.

Carbon coating on SiO surface is crucial for enhancing initial Coulombic efficiency (ICE) and cycling performance in batteries, while also buffering volume expansion. Despite its market prevalence, the effects of the carbon layer's quality and structure on the electrochemical properties of SiO remain underexplored. This study compares carbon layers produced via gas-phase and solid-phase coating methods, introducing an innovative technique that sequentially uses two gases to develop a low-impedance hybrid carbon structure.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) have recently gained attention due to their tailorable properties and versatile applications in several fields, including green chemistry, pharmaceuticals, and energy storage. Their tunable properties can be enhanced by mixing DESs with cosolvents such as ethanol, acetonitrile, and water. DESs are structurally complex, and molecular modeling techniques, including quantum mechanical calculations and molecular dynamics simulations, play a crucial role in understanding their intricate behavior when mixed with cosolvents.

View Article and Find Full Text PDF

Advanced glycation end products (AGEs) accumulate in various tissues, including bone, due to aging and conditions like diabetes mellitus. To investigate the effects of AGEs on bone material quality and biomechanical properties, an study utilizing human tibial cortex, sectioned into 90 beams, and randomly assigned to three mechanical test groups was performed. Each test group included ribose ( = 0.

View Article and Find Full Text PDF

Elemental Germanium Activation and Catalysis Enabled by Mechanical Force.

Angew Chem Int Ed Engl

January 2025

Sichuan University West China Hospital, State key laboratory of biotherapy, Renming South Road 17, 610041, Chengdu, CHINA.

In the realm of materials science and chemical industry, germanium emerges as a strategic resource with distinctive properties that extend its applicability beyond traditional electronics and optics into the promising field of chemical catalysis. Despite its significant role in advanced technological applications, the potential of elemental germanium as a catalyst remains unexplored. Leveraging recent developments in mechanochemistry, this study introduces a groundbreaking approach to activate elemental germanium via mechanical force, facilitating the Reformatsky reaction without the reliance on external reducing agents.

View Article and Find Full Text PDF

In this article we describe research on the synthesis and characterization of a family of "Janus" amphiphiles composed of disaccharide head groups and alkaloid units joined together via a methylene linker, and bearing a lateral aliphatic chain of varying length. The condensed phases formed by self-organization of the products as a function of temperature were characterized by differential scanning calorimetry, thermal polarized light microscopy, and small angle X-ray scattering, allied with computational modelling and simulations. Structural studies on heating specimens from the solid showed that some homologues exhibited lamellar, columnar and bicontinuous mesophases, whereas the same homologues revealed different phase sequences on cooling from the amorphous liquid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!