A novel and generally applicable method for determining structures of membrane proteins in solution via small-angle neutron scattering (SANS) is presented. Common detergents for solubilizing membrane proteins were synthesized in isotope-substituted versions for utilizing the intrinsic neutron scattering length difference between hydrogen and deuterium. Individual hydrogen/deuterium levels of the detergent head and tail groups were achieved such that the formed micelles became effectively invisible in heavy water (D O) when investigated by neutrons. This way, only the signal from the membrane protein remained in the SANS data. We demonstrate that the method is not only generally applicable on five very different membrane proteins but also reveals subtle structural details about the sarco/endoplasmatic reticulum Ca ATPase (SERCA). In all, the synthesis of isotope-substituted detergents makes solution structure determination of membrane proteins by SANS and subsequent data analysis available to nonspecialists.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.14345DOI Listing

Publication Analysis

Top Keywords

membrane proteins
20
neutron scattering
12
structure determination
8
determination membrane
8
small-angle neutron
8
generally applicable
8
membrane
6
proteins
5
invisible detergents
4
detergents structure
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!