Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A series of zirconium polyphenolate-decorated-(metallo)porphyrin metal-organic frameworks (MOFs), ZrPP-n (n = 1, 2), featuring infinite Zr -oxo chains linked via polyphenolate groups on four peripheries of eclipse-arranged porphyrin macrocycles, are successfully constructed through a top-down process from simulation to synthesis. These are the unusual examples of Zr-MOFs (or MOFs in general) based on phenolic porphyrins, instead of commonly known carboxylate-based types. Representative ZrPP-1 not only exhibits strong acid resistance (pH = 1, HCl) but also remains intact even when immersed in saturated NaOH solution (≈20 m), an exceptionally large range of pH resistance among MOFs. The metallation at the porphyrin core gives rise to materials with enhanced sorption and catalytic properties. In particular, ZrPP-1-Co, with precise and uniform distribution of active centers, exhibits not only high CO trapping capability (≈90 cm g at 1 atm, 273 K, among the highest in Zr-MOFs) but also high photocatalytic activity for reduction of CO into CO (≈14 mmol g h ) and high selectivity over CH (>96.4%) without any cocatalyst under visible-light irradiation (λ > 420 nm). Given the strong chemical resistance under extreme alkali conditions, these catalysts can be recycled without appreciable loss of activity. The possible mechanism for photocatalytic reduction of CO -to-CO over ZrPP-1-Co is also proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201704388 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!