Three-dimensional (3D) cultures of human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) hold great promise for drug discovery, providing a better approximation to the in vivo physiology over standard two-dimensional (2D) monolayer cultures. However, the transition of CM differentiation protocols from 2D to 3D cultures is not straightforward. In this work, we relied on the aggregation of hPSC-derived cardiac progenitors and their culture under agitated conditions to generate highly pure cardiomyocyte aggregates. Whole-transcriptome analysis and C-metabolic flux analysis allowed to demonstrate at both molecular and fluxome levels that such 3D culture environment enhances metabolic maturation of hiPSC-CMs. When compared to 2D, 3D cultures of hiPSC-CMs displayed down-regulation of genes involved in glycolysis and lipid biosynthesis and increased expression of genes involved in OXPHOS. Accordingly, 3D cultures of hiPSC-CMs had lower fluxes through glycolysis and fatty acid synthesis and increased TCA-cycle activity. Importantly, we demonstrated that the 3D culture environment reproducibly improved both CM purity and metabolic maturation across different hPSC lines, thereby providing a robust strategy to derive enriched hPSC-CMs with metabolic features closer to that of adult CMs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.26504 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!