Vanilla is an orchid of economic importance widely cultivated in tropical regions and native to Mexico. We sampled three species of Vanilla (V. planifolia, V. pompona, and V. insignis) in different crop systems. We studied the effect of crop system on the abundance, type of fungi, and quality of pelotons found in the roots using light and electron microscopy and direct sequencing of mycorrhizal structures. Fungi were identified directly from pelotons obtained from terrestrial roots of vanilla plants in the flowering stage. Root samples were collected from plants in crop systems located in the Totonacapan area in Mexico (states of Puebla and Veracruz). DNA was extracted directly from 40 pelotons and amplified using ITS rRNA sequencing. Peloton-like structures were observed, presenting a combination of active pelotons characterized by abundant hyphal coils and pelotons in various stages of degradation. The most active pelotons were observed in crop systems throughout living tutors (host tree) in comparison with roots collected from dead or artificial tutors. Fungi identified directly from pelotons included Scleroderma areolatum, a common ectomycorrhizal fungus that has not been reported as a mycorrhizal symbiont in orchids. Direct amplification of pelotons also yielded common plant pathogens, including Fusarium and Pyrenophora seminiperda, especially in those sites with low colonization rates, and where large numbers of degraded pelotons were observed. This research reports for the first time the potential colonization of Vanilla by Scleroderma, as a putative orchid mycorrhizal symbiont in four sites in Mexico and the influence of crop system on mycorrhizal colonization on this orchid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00572-017-0808-6 | DOI Listing |
J Integr Plant Biol
January 2025
State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China.
As sessile organisms, plants must directly face various stressors. Therefore, plants have evolved a powerful stress resistance system and can adjust their growth and development strategies appropriately in different stressful environments to adapt to complex and ever-changing conditions. Nevertheless, prioritizing defensive responses can hinder growth; this is a crucial factor for plant survival but is detrimental to crop production.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
School of Life and Health Sciences & College of Tropical Crops, Hainan University, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
Background: Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense is a soil-borne fungal disease.
View Article and Find Full Text PDFBMC Genomics
January 2025
Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China.
Background: Booklice, belonging to the genus Liposcelis (Psocodea: Liposcelididae), commonly known as psocids, infest a wide range of stored products and are implicated in the transmission of harmful microorganisms such as fungi and bacteria. The olfactory system is critical for insect feeding and reproduction. Elucidating the molecular mechanisms of the olfactory system in booklice is crucial for developing effective control strategies.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Institute of Food Crops, Hubei Academy of Agricultural Sciences/Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China.
Background: Sucrose non-fermenting-1-related protein kinases (SnRKs) have been implicated in plant growth and stress responses. Although SnRK3.23 is known to be involved in drought stress, the underlying mechanism of resistance differs between Arabidopsis and rice, and little is known about its function in wheat.
View Article and Find Full Text PDFSci Data
January 2025
International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya.
To address food and nutrition security in the face of burgeoning global populations and erratic climatic conditions there is a need to include nutrient dense, climatic resilient but neglected indigenous fruit trees in agrifood systems. Here we present the draft genome sequence of Kei Apple, Dovyalis afra, a neglected indigenous African fruit tree with untapped potential to contribute to nutrient security and improved livelihoods. Our long-read-based genome assembly comprises 440 Mbp sequence across 1190 contigs with a N50 and L50 of 13.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!