Transporters undergo large conformational changes in their functional cycle. RND (Resistance-Nodulation-Division) family efflux transporters usually exist as homotrimers, and each protomer was proposed to undergo a cycle of conformational changes in succession so that at any given time the trimer would contain three protomers of different conformations, the functionally rotating mechanism of transport. This mechanism implies that the inactivation of one protomer among three will inactivate the entire trimeric ensemble by blocking the functional rotation. We describe a biochemical approach to test this prediction by first producing a giant protein in which the three protomers of Escherichia coli AcrB efflux pump are covalently linked together through linker sequences, and then testing for its function by inactivation of a single protomer unit. Inactivation can be done permanently by mutating a residue involved in proton relay, or in "real time" by using a protein in which one protomer contains two Cys residues on both sides of the large cleft in the periplasmic domain and then by rapidly inactivating this protomer with a methanethiosulfonate cross-linker.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-7454-2_9DOI Listing

Publication Analysis

Top Keywords

covalently linked
8
rnd resistance-nodulation-division
8
efflux transporters
8
escherichia coli
8
coli acrb
8
conformational changes
8
three protomers
8
protomer
5
linked trimers
4
trimers rnd
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!