Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper introduces a case study at a community hospital to develop a predictive model to quantify readmission risks for patients with chronic obstructive pulmonary disease (COPD), and use it to support decision making for appropriate incentive-based interventions. Data collected from the community hospital's database are analyzed to identify risk factors and a logistic regression model is developed to predict the readmission risk within 30 days post-discharge of an individual COPD patient. By targeting on the high-risk patients, we investigate the implementability of the incentive policy which encourages patients to take interventions and helps them to overcome the compliance barrier. Specifically, the conditions and scenarios are identified for either achieving the desired readmission rate while minimizing the total cost, or reaching the lowest readmission rate under incentive budget constraint. Currently, such models are under consideration for a pilot study at the community hospital.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10729-017-9426-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!