Dictyoglomus turgidum is a hyperthermophilic, anaerobic, gram-negative bacterium that shows an array of putative glycoside hydrolases (GHs) encoded by its genome, a feature that makes this microorganism very interesting for biotechnological applications. The aim of this work is the characterization of a hyperthermophilic GH5, Dtur_0671, of D. turgidum, annotated as endoglucanase and herein named DturCelB in agreement to DturCelA, which was previously characterized. The synthetic gene was expressed in Escherichia coli. The purified recombinant enzyme is active as a monomer (40 kDa) and CD structural studies showed a conserved α/β structure at different temperatures (25 and 70 °C) and high thermoresistance (Tm of 88 °C). Interestingly, the enzyme showed high endo-β-1,4-mannanase activity vs various mannans, but low endo-β-1,4 glucanase activity towards carboxymethylcellulose. The K and V of DturCelB were determined for both glucomannan and CMC: they were 4.70 mg/ml and 473.1 μmol/min mg and 1.83 mg/ml and 1.349 μmol/min mg, respectively. Its optimal activity towards temperature and pH resulted to be 70 °C and pH 5.4, respectively. Further characterization highlighted good thermal stability (~ 50% of enzymatic activity after 2 h at 70 °C) and pH stability over a broad range (> 90% of activity after 1 h in buffer, ranging pH 5-9); resistance to chemicals was also observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00792-017-0983-6 | DOI Listing |
Appl Biochem Biotechnol
November 2021
State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
Phosphorylase is a type of enzyme-producing sugar phosphates through the reversible phosphorolysis reactions of glycosides, which makes it an important starting enzyme in multi-enzyme systems for rare sugar biomanufacturing. To investigate its application in D-tagatose biosynthesis from maltodextrin using in vitro multi-enzyme cascade biosystem, the α-glucan phosphorylase (αGP; EC 2.4.
View Article and Find Full Text PDFBioorg Chem
June 2021
Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China. Electronic address:
A novel β-xylosidase Dt-2286 from Dictyoglomus turgidum was cloned and overexpressed in Escherichia coli BL21 (DE3). Dt-2286 belonging to glycoside hydrolase (GH) family 3 encodes a polypeptide with 762 amino acid residues with a molecular weight of 85.1 kDa.
View Article and Find Full Text PDFBioorg Chem
January 2020
Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China; Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, 159 Long Pan Road, Nanjing 210037, China. Electronic address:
With the aim of finding an extracellular biocatalyst that can efficiently remove the C-7 xylose group from 10-deacetyl-7-xylosltaxol, a Dictyoglomus turgidum β-xylosidase was cloned and expressed in Escherichia coli BL21 (DE3). The molecular mass of purified Dt-Xyl3 was approximately 84 kDa. The recombinant Dt-Xyl3 was most active at pH 5.
View Article and Find Full Text PDFJ Agric Food Chem
February 2019
Department of Bioscience and Biotechnology , Konkuk University, Seoul 05029 , Republic of Korea.
The Platycodon grandiflorum root, Platycodi radix, a common vegetable, and its extract with glycosylated saponins, platycosides, have been used as food items and food health supplements for pulmonary diseases and respiratory disorders. Enzymes convert glycosylated saponins into deglycosylated saponins, which exhibit higher biological activity than glycosylated saponins. In this study, β-glucosidase from the hyperthermophilic bacterium Dictyoglomus turgidum converted platycosides in the Platycodi radix extract into deglucosylated platycosides.
View Article and Find Full Text PDFSci Rep
March 2018
University of Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica Complesso Universitario S. Giuseppe, Piazza S. Eusebio 5, Vercelli, 13100, Italy.
Lignocellulosic biomass (LCB) is a low-cost and abundant source of fermentable sugars. Enzymatic hydrolysis is one of the main ways to obtain sugars from biomass, but most of the polysaccharide-degrading enzymes are poorly efficient on LCB and cellulases with higher performances are required. In this study, we designed a chimeric protein by adding the carbohydrate binding module (CBM) of the cellulosomal enzyme CtLic26A-Cel5E (endoglucanase H or CelH) from Clostridium (Ruminiclostridium) thermocellum to the C-terminus of Dtur CelA, an interesting hyperthermostable endoglucanase from Dictyoglomus turgidum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!