The neutrons for science (NFS) facility is a component of SPIRAL-2, the new superconducting linear accelerator built at GANIL in Caen (France). The proton and deuteron beams delivered by the accelerator will allow producing intense neutron fields in the 100 keV-40 MeV energy range. Continuous and quasi-mono-kinetic energy spectra, respectively, will be available at NFS, produced by the interaction of a deuteron beam on a thick Be converter and by the 7Li(p,n) reaction on thin converter. The pulsed neutron beam, with a flux up to two orders of magnitude higher than those of other existing time-of-flight facilities, will open new opportunities of experiments in fundamental research as well as in nuclear data measurements. In addition to the neutron beam, irradiation stations for neutron-, proton- and deuteron-induced reactions will be available for cross-sections measurements and for the irradiation of electronic devices or biological cells. NFS, whose first experiment is foreseen in 2018, will be a very powerful tool for physics, fundamental research as well as applications like the transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors.

Download full-text PDF

Source
http://dx.doi.org/10.1093/rpd/ncx257DOI Listing

Publication Analysis

Top Keywords

neutrons science
8
neutron beam
8
fundamental well
8
will
5
science facility
4
facility spiral-2
4
spiral-2 neutrons
4
science nfs
4
nfs facility
4
facility component
4

Similar Publications

Digestion of food proteins: the role of pepsin.

Crit Rev Food Sci Nutr

January 2025

Riddet Institute, Massey University, Palmerston North, New Zealand.

The nutritive value of a protein is determined not only by its amino acid composition, but also by its digestibility in the gastrointestinal tract. The interaction between proteins and pepsin in the gastric stage is the first step and plays an important role in protein hydrolysis. Moreover, it affects the amino acid release rates and the allergenicity of the proteins.

View Article and Find Full Text PDF

Spin Chains with Highly Quantum Character through Strong Covalency in CaCrN.

J Am Chem Soc

January 2025

Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States.

The insulating transition metal nitride CaCrN consists of sheets of triangular [CrN] units with symmetry that are connected via quasi-1D zigzag chains. Due to strong covalency between Cr and N, Cr ions are unusually low-spin, and = 1/2. Magnetic susceptibility measurements reveal dominant quasi-1D spin correlations with very large nearest-neighbor antiferromagnetic exchange = 340 K and yet no sign of magnetic order down to = 0.

View Article and Find Full Text PDF

Metal halide perovskite (MHP) solar cells are promising aerospace power sources given their potential as inexpensive, lightweight, and resilient solar electricity generators. Herein, the intrinsic radiation tolerance of unencapsulated methylammonium lead iodide/chloride (CHNHPbICl) films was isolated. Spatially resolved photoluminescence (PL) spectroscopy and confocal microscopy revealed the fundamental defect physics through optical changes as films were irradiated with 4.

View Article and Find Full Text PDF

In ordered magnets, the elementary excitations are spin waves (magnons), which obey Bose-Einstein statistics. Similarly to Cooper pairs in superconductors, magnons can be paired into bound states under attractive interactions. The Zeeman coupling to a magnetic field is able to tune the particle density through a quantum critical point, beyond which a 'hidden order' is predicted to exist.

View Article and Find Full Text PDF

In this paper, the transfer matrix method is used to study the dispersion of acoustic waves in a finite periodic expansion chambers system with a defect. Two kinds of structures are studied. The first one is formed by expansion chambers, which are symmetrical concerning a defect, and the second one is asymmetrical with a defect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!