Development of a reactive force field for the Fe-C interaction to investigate the carburization of iron.

Phys Chem Chem Phys

State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, P. R. China.

Published: January 2018

The approach of molecular dynamics with Reactive Force Field (ReaxFF) is a promising way to investigate the carburization of iron which is pivotal in the preparation of desired iron-based materials and catalysts. However, it is a challenge to develop a reliable ReaxFF to describe the Fe-C interaction, especially when it involves bond rearrangement. In this work, we develop an exclusive set of Reactive Force Field (ReaxFF) parameters, denoted RPOIC-2017, to describe the diffusion behavior of carbon atoms in the α-Fe system. It inherited some partial parameters in 2012 (ReaxFF-2012) which are suitable for hydrogen adsorption and dissociation. This set of parameters is trained against data from first-principles calculations, including the equations of state of α-Fe, the crystal constant of FeC and FeC, a variety of periodic surface structures with varying carbon coverages, as well as the barriers of carbon diffusion in the α-Fe bulk and on diverse surfaces. The success in predicting the carbon diffusion coefficient and the diffusion barrier using the developed RPOIC-2017 potential demonstrates that the performance is superior to that of the traditional MEAM potential. The new ReaxFF for the Fe-C interaction developed in this work is not only essential for the design of novel iron based materials, but could also help understand atomic arrangements and the interfacial structure of iron carbides.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cp05958bDOI Listing

Publication Analysis

Top Keywords

reactive force
12
force field
12
fe-c interaction
12
investigate carburization
8
carburization iron
8
field reaxff
8
carbon diffusion
8
development reactive
4
field fe-c
4
interaction investigate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!