A numerical self-consistent field modeling approach was employed to study the mechanical unfolding of a globule made by comb-like polymers in a poor solvent with the aim of unraveling how the macromolecular architecture affects the shape of the single-molecule force-deformation curves. We demonstrate that the dependence of the restoring force on the imposed extension of the main chain of the comb-like polymer exhibits a characteristic oscillatory shape in the intermediate deformation range. Theoretical arguments are developed that enable us to relate the shape of the patterns on the force-deformation curves to the molecular architecture (grafting density and length of the side chains) and interaction parameters. Thus, the results of our study suggest a new approach for the determination of macromolecular topology from single-molecule mechanical unfolding experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7sm01589eDOI Listing

Publication Analysis

Top Keywords

comb-like polymer
8
poor solvent
8
macromolecular architecture
8
mechanical unfolding
8
force-deformation curves
8
unfolding comb-like
4
polymer poor
4
solvent translation
4
translation macromolecular
4
architecture force-deformation
4

Similar Publications

Ultrafast, Robust, and Reversible Self-Assembled Nanofibers via Thiolactone Chemistry Strategy.

Small

January 2025

Xi'an Key Laboratory of Functional Organic Porous Materials, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China.

Self-assembly in supramolecular chemistry is crucial for nanostructure creation but faces challenges like slow speeds and lack of reversibility. In this study, a novel comb-like polymer poly(amide sulfide) (PAS) based on thiolactone chemistry is reported, which rapidly self-assemble into stable nanofibers, offering excellent robustness and reversibility in the self-assembled structure. The PAS backbone contains pairs of amide bonds, each linked to an alkyl side chain in a controlled 2:1 ratio.

View Article and Find Full Text PDF

The pervaporation properties of membranes based on comb-like polysiloxanes when C-C alcohols are removed from water were studied for the first time. It was established that membranes based on comb-like polysiloxanes with linear aliphatic and organosilicon substituents have increased permeability selectivity for C alcohols. The obtained results were interpreted from the point of view of the solubility of the components of the separated mixture in polysiloxanes.

View Article and Find Full Text PDF

Amphiphilic copolymers of comb-like poly(poly(ethylene glycol) methacrylate) (PPEGMA) with methyl methacrylate (MMA) synthesized by one-pot atom transfer radical polymerization were mixed with lithium bis (trifluoromethanesulfonyl) imide salt to formulate dry solid polymer electrolytes (DSPE) for semisolid-state Li-ion battery applications. The PEO-type side chain length (EO monomer's number) in the PEGMA macromonomer units was varied, and its influence on the mechanical and electrochemical characteristics was investigated. It was found that the copolymers, due to the presence of PMMA segments, possess viscoelastic behavior and less change in mechanical properties than a PEO homopolymer with 100 kDa molecular weight in the investigated temperature range.

View Article and Find Full Text PDF

Effect of Macromolecular Architecture on Adhesion.

Langmuir

December 2024

Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation.

The behavior of single linear chains on a substrate is a well-studied area of polymer science. Herein, one of the most essential issues is the interaction of the chains with the substrate, which determines both macromolecular conformations near the substrate and adhesive properties of polymer materials. However, very little is known about the effect of macromolecular architecture on adhesion.

View Article and Find Full Text PDF

Brush-like graft copolymers (A-g-B), in which linear A-blocks are randomly grafted onto the backbone of a brush-like B-block, exhibit intense strain-stiffening and high mechanical strength on par with load-bearing biological tissues such as skin and blood vessels. To elucidate molecular mechanisms underlying this tissue-mimetic behavior, in situ synchrotron X-ray scattering was measured during uniaxial stretching of bottlebrush- and comb-like graft copolymers with varying densities of poly(dimethyl siloxane) and poly(isobutylene) side chains. In an undeformed state, these copolymers revealed a single interference peak corresponding to the average spacing between the domains of linear A-blocks arranged in a disordered, liquid-like configuration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!