Bioelectronic Medicines is an emerging field that capitalizes on minimally-invasive technology to stimulate the autonomic nervous system in order to evoke therapeutic biomolecular changes at the end-organ. The goal of Bioelectronic Medicines is to realize both 'precision and personalized' medicine. 'Precise' stimulation of neural circuitry creates biomolecular changes targeted exactly where needed to maximize therapeutic effects while minimizing off-target changes associated with side-effects. The therapy is then 'personalized' by utilizing implanted sensors to measure the biomolecular concentrations at, or near, the end-organ of interest and continually adjusting therapy to account for patient-specific biological changes throughout the day. To realize the promise of Bioelectronic Medicines, there is a need for minimally invasive, real-time measurement of biomarkers associated with the effects of autonomic nerve stimulation to be used for continuous titration of therapy. In this study we examine the feasibility of using fast scan cyclic voltammetry (FSCV) to measure norepinephrine levels, a neurochemical relevant to end-organ function, directly from blood. FSCV is a well-understood method for measuring electroactive neurochemicals in the central nervous system with high temporal and high spatial resolution that has yet to be adapted to the study of the autonomic nervous system. The results demonstrate that while detecting the electroactive neurochemical norepinephrine in blood is more challenging than obtaining the same FSCV measurements in a buffer solution due to biofouling of the electrode, it is feasible to utilize a minimally invasive FSCV electrode to obtain neurochemical measurements in blood.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5698011 | PMC |
http://dx.doi.org/10.1109/MeMeA.2017.7985859 | DOI Listing |
Bioelectron Med
January 2025
SecondWave Systems Incorporated, Head Quarters, Minneapolis-Saint Paul, MN, 55104, USA.
The field of bioelectronic medicine has advanced rapidly from rudimentary electrical therapies to cutting-edge closed-loop systems that integrate real-time physiological monitoring with adaptive neuromodulation. Early innovations, such as cardiac pacemakers and deep brain stimulation, paved the way for these sophisticated technologies. This review traces the historical and technological progression of bioelectronic medicine, culminating in the emerging potential of closed-loop devices for multiple disorders of the brain and body.
View Article and Find Full Text PDFIEEE J Solid-State Circuits
November 2024
Department of Electrical and Computer Engineering, Rice University, Houston TX, 77005, USA.
Miniature bioelectronic implants promise revolutionary therapies for cardiovascular and neurological disorders. Wireless power transfer (WPT) is a significant method for miniaturization, eliminating the need for bulky batteries in today's devices. Despite successful demonstrations of millimetric battery-free implants in animal models, the robustness and efficiency of WPT are known to degrade significantly under misalignment incurred by body movements, respiration, heart beating, and limited control of implant orientation during surgery.
View Article and Find Full Text PDFPain Pract
February 2025
Department of Anesthesiology, University California San Diego, San Diego, California, USA.
Background: Nonthermal, pulsed shortwave (radiofrequency) therapy (PSWT) is a nonpharmacologic, noninvasive modality that limited evidence suggests provides analgesia. Its potential favorable risk-benefit ratio stems from its lack of side effects and significant medical risks, applicability to any anatomic location, long treatment duration, and ease of application by simply affixing it with tape. Even with a relatively small treatment effect, PSWT might contribute to a multimodal analgesic regimen, similar to acetaminophen.
View Article and Find Full Text PDFNat Methods
January 2025
OncoRNALab, Cancer Research Institute Ghent (CRIG), Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
Environ Int
January 2025
Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China.
Polystyrene nanoplastics (PS-NPs) are omnipresent in the air and can be inhaled by humans. However, their long-term adverse implications and toxicological mechanisms for human respiratory health are unclear. Therefore, this study aims to provide new insights into the pulmonary toxicity of PS-NPs using mice and organoid models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!