Linkage and the maintenance of heritable variation by mutation-selection balance.

Genetics

Institut für Mathematik, Universität Wien, Austria.

Published: January 1989

The role of linkage in influencing heritable variation maintained through a balance between mutation and stabilizing selection is investigated for two different models. In both cases one trait is considered and the interactions within and between loci are assumed to be additive. Contrary to most earlier investigations of this problem no a priori assumptions on the distribution of genotypic values are imposed. For a deterministic two-locus two-allele model with recombination and mutation, related to the symmetric viability model, a complete nonlinear analysis is performed. It is shown that, depending on the recombination rate, multiple stable equilibria may coexist. The equilibrium genetic and genic variances are calculated. For a polygenic trait in a finite population with a possible continuum of allelic effects a simulation study is performed. In both models the equilibrium genetic and genic variances are roughly equal to the house-of-cards prediction or its finite population counterpart as long as the recombination rate is not extremely low. However, negative linkage disequilibrium builds up. If the loci are very closely linked the equilibrium additive genetic variance is slightly lower than the house-of-cards prediction, but the genic variance is much higher. Depending on whether the parameters are in favor of the house-of-cards or the Gaussian approximation, different behavior of the genetic system occurs with respect to linkage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1203600PMC
http://dx.doi.org/10.1093/genetics/121.1.175DOI Listing

Publication Analysis

Top Keywords

heritable variation
8
recombination rate
8
equilibrium genetic
8
genetic genic
8
genic variances
8
finite population
8
house-of-cards prediction
8
linkage
4
linkage maintenance
4
maintenance heritable
4

Similar Publications

Males in many species show courtship and mating preferences for certain females over others when given the choice. One of the most common targets of male mate choice in insects is female body size, with males preferring to court and mate with larger, higher-fecundity females and investing more resources in matings with those females. Although this preference is well-documented at the species level, less is known about how this preference varies within species and whether there is standing genetic variation for male mate choice within populations.

View Article and Find Full Text PDF

Genetic variation for malting quality as well as metabolomic and near-infrared features was identified. However, metabolomic and near-infrared features as additional omics-information did not improve accuracy of predicted breeding values. Significant attention has recently been given to the potential benefits of metabolomics and near-infrared spectroscopy technologies for enhancing genetic evaluation in breeding programs.

View Article and Find Full Text PDF

New genotypes of hybrid from the and sections, which encompass economically important species of L., have great potential to significantly enhance genetic gain from selection. Growth and its functional and structural determinants exhibiting a high level of variability are not only controlled by genetics, but also affected by environment, as well as genotype and environment interaction (G×E).

View Article and Find Full Text PDF

The Cayo Santiago rhesus macaque colony is a renowned primate population that has experienced significant natural and anthropogenic ecological variation in their 85-year history. Demographic and familial information is also tracked and collated for the majority of monkeys. Thus, the health history of rhesus macaques at Cayo Santiago should reflect the impacts of both environmental and genetic factors.

View Article and Find Full Text PDF

Selection can favor a recombination landscape that limits polygenic adaptation.

Mol Biol Evol

January 2025

Institut de Biologie, École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, Paris, F-75005, France.

Modifiers of recombination rates have been described but the selective pressures acting on them and their effect on adaptation to novel environments remain unclear. We performed experimental evolution in the nematode Caenorhabditis elegans using alternative rec-1 alleles modifying the position of meiotic crossovers along chromosomes without detectable direct fitness effects. We show that adaptation to a novel environment is impaired by the allele that decreases recombination rates in the genomic regions containing fitness variation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!