Chronic coinfections of Staphylococcus aureus and Pseudomonas aeruginosa frequently fail to respond to antibiotic treatment, leading to significant patient morbidity and mortality. Currently, the impact of interspecies interaction on S. aureus antibiotic susceptibility remains poorly understood. In this study, we utilize a panel of P. aeruginosa burn wound and cystic fibrosis (CF) lung isolates to demonstrate that P. aeruginosa alters S. aureus susceptibility to bactericidal antibiotics in a variable, strain-dependent manner and further identify 3 independent interactions responsible for antagonizing or potentiating antibiotic activity against S. aureus. We find that P. aeruginosa LasA endopeptidase potentiates lysis of S. aureus by vancomycin, rhamnolipids facilitate proton-motive force-independent tobramycin uptake, and 2-heptyl-4-hydroxyquinoline N-oxide (HQNO) induces multidrug tolerance in S. aureus through respiratory inhibition and reduction of cellular ATP. We find that the production of each of these factors varies between clinical isolates and corresponds to the capacity of each isolate to alter S. aureus antibiotic susceptibility. Furthermore, we demonstrate that vancomycin treatment of a S. aureus mouse burn infection is potentiated by the presence of a LasA-producing P. aeruginosa population. These findings demonstrate that antibiotic susceptibility is complex and dependent not only upon the genotype of the pathogen being targeted, but also on interactions with other microorganisms in the infection environment. Consideration of these interactions will improve the treatment of polymicrobial infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5720819PMC
http://dx.doi.org/10.1371/journal.pbio.2003981DOI Listing

Publication Analysis

Top Keywords

antibiotic susceptibility
12
aureus
9
pseudomonas aeruginosa
8
staphylococcus aureus
8
aureus antibiotic
8
antibiotic
6
aeruginosa
5
aeruginosa exoproducts
4
exoproducts determine
4
determine antibiotic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!