Nanoparticles provide new fields for life medical science application, including targeted-drug delivery and cancer treatment. To maximize the delivery efficiency of nanoparticle, one must understand the uptake mechanism of nanoparticle in cells, which may determine their ultimate fate and localization in cells. Recently, the proposed-cancer stem cell (CSC) theory has been attracted great attention and regarded as new targets for the new nanodrug developmet and cancer therapies. The interaction between nanoparticles and cancer cells has been extensively studied, but the uptake mechanism of nanoparticles in CSCs has received little attention. Here, we use the pharmacological inhibitors of major endocytic pathways to study the silica nanoparticle (SiNP) uptake mechanisms in the human breast adenocarcinoma cell line (MCF-7) and MCF-7-derived breast cancer stem cells (BCSCs). The results demonstrate that the uptake of SiNPs, particularly amino-functionalized SiNPs, in MCF-7 cells is strongly affected by the actin depolymerization, whereas BCSCs more strongly inhibit the amino-functionalized SiNP uptake after the scavenger receptor disruption. These findings indicate a distinct endocytic mechanism of functionalized SiNPs in BCSCs, which is significant for designing ideal nanosized drug delivery systems and improving the selectivity for CSC-targeted therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5701218 | PMC |
http://dx.doi.org/10.1038/s41598-017-16591-z | DOI Listing |
FEBS J
January 2025
Department of Drug Design and Pharmacology, University of Copenhagen, Denmark.
The glucagon-like peptide-1 receptor (GLP-1R) plays an important role in regulating insulin secretion and reducing body weight, making it a prominent target in the treatment of type 2 diabetes and obesity. Extensive research on GLP-1R signaling has provided insights into the connection between receptor function and physiological outcomes, such as the correlation between Gs signaling and insulin secretion, yet the exact mechanisms regulating signaling remain unclear. Here, we explore the internalization pathway of GLP-1R, which is crucial for controlling insulin release and maintaining pancreatic beta-cell function.
View Article and Find Full Text PDFMol Neurodegener
December 2024
German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany.
Background: The prion-like spreading of Tau pathology is the leading cause of disease progression in various tauopathies. A critical step in propagating pathologic Tau in the brain is the transport from the extracellular environment and accumulation inside naïve neurons. Current research indicates that human neurons internalize both the physiological extracellular Tau (eTau) monomers and the pathological eTau aggregates.
View Article and Find Full Text PDFJ Cell Mol Med
December 2024
Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Dilated cardiomyopathy (DCM), a form of non-ischaemic myocardial disease, is characterised by structural and functional cardiac abnormalities. As defined by the World Health Organisation, DCM constitutes a significant cardiac pathology, leading to increased morbidity and mortality due to complications such as heart failure and arrhythmias. The diagnostic process for DCM predominantly employs echocardiography and MRI, with biomarkers like NT-pro BNP and troponin providing supportive, yet non-specific, evidence.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
G protein-coupled receptor (GPCR) endocytosis is canonically associated with β-arrestins. Here, we delineate a β-arrestin-independent endocytic pathway driven by the cytoskeletal motor, myosin VI. Myosin VI engages GIPC, an adaptor protein that binds a PDZ sequence motif present at the C-terminus of several GPCRs.
View Article and Find Full Text PDFPLoS Pathog
December 2024
Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada.
Cell entry of severe acute respiratory coronavirus-2 (SARS-CoV-2) and other CoVs can occur via two distinct routes. Following receptor binding by the spike glycoprotein, membrane fusion can be triggered by spike cleavage either at the cell surface in a transmembrane serine protease 2 (TMPRSS2)-dependent manner or within endosomes in a cathepsin-dependent manner. Cellular sialoglycans have been proposed to aid in CoV attachment and entry, although their functional contributions to each entry pathway are unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!