Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A tensor-input/tensor-output Recursive Exponentially Weighted N-Way Partial Least Squares (REW-NPLS) regression algorithm is proposed for high dimension multi-way (tensor) data treatment and adaptive modeling of complex processes in real-time. The method unites fast and efficient calculation schemes of the Recursive Exponentially Weighted PLS with the robustness of tensor-based approaches. Moreover, contrary to other multi-way recursive algorithms, no loss of information occurs in the REW-NPLS. In addition, the Recursive-Validation method for recursive estimation of the hyper-parameters is proposed instead of conventional cross-validation procedure. The approach was then compared to state-of-the-art methods. The efficiency of the methods was tested in electrocorticography (ECoG) and magnetoencephalography (MEG) datasets. The algorithms are implemented in software suitable for real-time operation. Although the Brain-Computer Interface applications are used to demonstrate the methods, the proposed approaches could be efficiently used in a wide range of tasks beyond neuroscience uniting complex multi-modal data structures, adaptive modeling, and real-time computational requirements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5701264 | PMC |
http://dx.doi.org/10.1038/s41598-017-16579-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!