Break-induced replication (BIR) is a DNA double-strand break repair pathway that leads to genomic instabilities similar to those observed in cancer. BIR proceeds by a migrating bubble where asynchrony between leading and lagging strand synthesis leads to accumulation of long single-stranded DNA (ssDNA). It remains unknown how this ssDNA is prevented from unscheduled pairing with the template, which can lead to genomic instability. Here, we propose that uncontrolled Rad51 binding to this ssDNA promotes formation of toxic joint molecules that are counteracted by Srs2. First, Srs2 dislodges Rad51 from ssDNA preventing promiscuous strand invasions. Second, it dismantles toxic intermediates that have already formed. Rare survivors in the absence of Srs2 rely on structure-specific endonucleases, Mus81 and Yen1, that resolve toxic joint-molecules. Overall, we uncover a new feature of BIR and propose that tight control of ssDNA accumulated during this process is essential to prevent its channeling into toxic structures threatening cell viability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702615 | PMC |
http://dx.doi.org/10.1038/s41467-017-01987-2 | DOI Listing |
DNA Repair (Amst)
December 2024
Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
Tandem duplications (TD) are among the most frequent type of structural variant (SV) in the cancer genome. They are characterized by a single breakpoint junction that defines the boundaries and the size of the duplicated segment. Cancer-associated TDs often increase oncogene copy number or disrupt tumor suppressor gene function, and thus have important roles in tumor evolution.
View Article and Find Full Text PDFAm J Med Genet A
December 2024
Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Health Care, Iowa City, Iowa, USA.
Triplications involving 5q21.3q23.3 are rare, and a phenotype has not been established.
View Article and Find Full Text PDFMol Cell
January 2025
Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA. Electronic address:
Replication fork collision with a DNA nick can generate a one-ended break, fostering genomic instability. The opposing fork's collision with the nick could form a second DNA end, enabling conservative repair by homologous recombination (HR). To study mechanisms of nickase-induced HR, we developed the Flp recombinase "step arrest" nickase in mammalian cells.
View Article and Find Full Text PDFMicroPubl Biol
November 2024
Dipartimento di Bioscienze, University of Milan, Milan, Lombardy, Italy.
All cells are commonly exposed to DNA double-strand breaks (DSBs), which must be properly repaired to avoid genomic instability. Break-Induced Replication (BIR) is a Homologous Recombination subpathway, which repairs DSBs resulting in mutagenesis, chromosome translocations and loss of heterozygosity. In budding yeast, the Srs2 DNA helicase/translocase plays both anti- and pro-recombination roles.
View Article and Find Full Text PDFMol Cell
January 2025
Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!