Identification and characterization of chemosensory gene families in the bark beetle, Tomicus yunnanensis.

Comp Biochem Physiol Part D Genomics Proteomics

Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China. Electronic address:

Published: March 2018

The bark beetle, Tomicus yunnanensis (Coleoptera: Scolytinae), is a seriously destructive pest of Yunnan pine (Pinus yunnanensis) and is distributed solely in Southwestern China. It has been a challenge to control this pest owing to its resistance to chemical pesticides, which have been used as the main control strategy of this species in recent years. Since this approach will continue until an alternative mitigation strategy is implemented, it is essential to develop novel or improved biocontrol approaches. In the current study, we aimed to identify most, if not all, of the bark beetle's chemosensory genes, and to address their respective phylogenetic relationships and expression characteristics. Digital gene expression (DGE) profiling and a comparison of the profiles at three developmental stages yielded 40,287,265 clean reads and a large number of differentially expressed genes (DEGs), with 21 up- and 20 down-regulated DEGs involved in chemoreception. Transcriptome of the three mixed stages revealed a total of 80 transcripts encoding chemosensory-related proteins comprising 45 odorant-binding proteins (OBPs), 12 chemosensory proteins (CSPs), 20 receptor proteins [9 odorant receptors (ORs), 8 gustatory receptors (GRs) and 3 ionotropic receptors (IRs)] and 3 sensory neuron membrane proteins (SNMPs). As many as 38 full-length sequences were acquired with a combination of transcriptomic analysis and rapid amplification of cDNA ends (RACE) strategy. Phylogenetic analysis showed that T. yunnanensis OBPs were clustered into four sub-groups: 27 Minus-C OBPs, 5 antennal binding proteins (ABPIIs), 10 Classic OBPs and one Plus-C OBP; meanwhile, the ORs were grouped into four clades (1, 2, 7b and Orco). Expression profiles revealed that 66 of 80 genes were detected in the three DGE libraries, and 15 soluble olfactory proteins were antennae-predominant, possibly guiding olfactory-associated behaviors of this beetle. Taken together, our study has provided valuable data for further functional studies of this beetle and will facilitate the identification of potential molecular targets associated with chemosensory reception for use in biocontrol strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbd.2017.11.003DOI Listing

Publication Analysis

Top Keywords

bark beetle
8
beetle tomicus
8
tomicus yunnanensis
8
proteins
7
identification characterization
4
chemosensory
4
characterization chemosensory
4
chemosensory gene
4
gene families
4
families bark
4

Similar Publications

Small Gap Dynamics in High Mountain Central European Spruce Forests-The Role of Standing Dead Trees in Gap Formation.

Plants (Basel)

December 2024

Department of Forest Resource Planning and Informatics, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 960 01 Zvolen, Slovak Republic.

Gap dynamics are driving many important processes in the development of temperate forest ecosystems. What remains largely unknown is how often the regeneration processes initialized by endogenous mortality of dominant and co-dominant canopy trees take place. We conducted a study in the high mountain forests of the Central Western Carpathians, naturally dominated by the Norway spruce.

View Article and Find Full Text PDF

Salicylic Aldehyde and Its Potential Use in Semiochemical-Based Pest Control Strategies Against .

Insects

December 2024

Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio Ambiente Recursos Naturales y Biodiversidad, Escuela de Ingeniería Agraria y Forestal, Universidad de León, Avenida de Portugal 41, 24009 León, Spain.

The poplar bark beetle (Coleoptera: Scolytidae) is a key pest of poplar trees (Malpighiales: Salicaceae, genus ) across northern Spain. However, among the more than 200 poplar clones available on the market, the clone USA 184-411 has the highest susceptibility to attacks. We tested the hypothesis that compounds released by the most susceptible poplar clone chemically mediate behavior.

View Article and Find Full Text PDF

Eruptive Insect Outbreaks from Endemic Populations Under Climate Change.

Bull Math Biol

December 2024

Department of Biology, University of Victoria, Victoria, BC, Canada.

Insects, especially forest pests, are frequently characterized by eruptive dynamics. These types of species can stay at low, endemic population densities for extended periods of time before erupting in large-scale outbreaks. We here present a mechanistic model of these dynamics for mountain pine beetle.

View Article and Find Full Text PDF

Background: Acanthacoccus lagerstroemiae (crape myrtle bark scale, CMBS) is an exotic scale insect that feeds on the sap of crape myrtle trees. Heavy infestations of CMBS reduce flowering and honeydew promotes sooty mold growth on the leaves and branches, reducing the aesthetic value of crape myrtle trees in urban landscapes. Lady beetles (Coleoptera: Coccinellidae) are generalist predators that feed on CMBS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!