Impact of plant photosystems in the remediation of benzo[a]pyrene and pyrene spiked soils.

Chemosphere

Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle (UoN), University Drive, Callaghan, NSW 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Advanced Technology Centre, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia. Electronic address:

Published: February 2018

The phytoremediation potential of 14 different plant species belonging to C3 and C4 carbon fixation pathway for soils spiked with polycyclic aromatic hydrocarbons (PAHs) such as benzo[a]pyrene (B[a]P) and pyrene (PYR) was investigated. A glasshouse experiment was conducted to measure the changes in morphological, physiological, biochemical parameters and the bioaccumulation and biodegradation ability of the plants in soils spiked with 48 and 194 mg kg of B[a]P and PYR, respectively. The per cent removal efficacy of B[a]P and PYR by the tested plant species over a period of 50 days was from 6 to 26% and 14 to 40% respectively. The maximum removal of both B[a]P and PYR was observed in Sudan grass (C4), vetiver (C4), maize (C4), and sunflower (C3). In terms of accumulation in root and shoot, the concentration of PYR was higher in both C3 and C4 plant species when compared to B[a]P. Overall the results indicated that C4 plants were more efficient than their C3 counterparts in terms of morphological, physiological, biochemical and degradation ability of PAHs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2017.11.081DOI Listing

Publication Analysis

Top Keywords

plant species
12
b[a]p pyr
12
soils spiked
8
morphological physiological
8
physiological biochemical
8
b[a]p
5
pyr
5
impact plant
4
plant photosystems
4
photosystems remediation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!