Manipulating human dendritic cell phenotype and function with targeted porous silicon nanoparticles.

Biomaterials

Future Industries Institute, University of South Australia, Adelaide, Australia; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, Australia; Monash Institute of Medical Engineering, Monash University, Clayton, Victoria, Australia. Electronic address:

Published: February 2018

Dendritic cells (DC) are the most potent antigen-presenting cells and are fundamental for the establishment of transplant tolerance. The Dendritic Cell-Specific Intracellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN; CD209) receptor provides a target for dendritic cell therapy. Biodegradable and high-surface area porous silicon (pSi) nanoparticles displaying anti-DC-SIGN antibodies and loaded with the immunosuppressant rapamycin (Sirolimus) serve as a fit-for-purpose platform to target and modify DC. Here, we describe the fabrication of rapamycin-loaded DC-SIGN displaying pSi nanoparticles, the uptake efficiency into DC and the extent of nanoparticle-induced modulation of phenotype and function. DC-SIGN antibody displaying pSi nanoparticles favourably targeted and were phagocytosed by monocyte-derived and myeloid DC in whole human blood in a time- and dose-dependent manner. DC preconditioning with rapamycin-loaded nanoparticles, resulted in a maturation resistant phenotype and significantly suppressed allogeneic T-cell proliferation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2017.11.017DOI Listing

Publication Analysis

Top Keywords

psi nanoparticles
12
dendritic cell
8
phenotype function
8
porous silicon
8
displaying psi
8
nanoparticles
5
manipulating human
4
dendritic
4
human dendritic
4
cell phenotype
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!