The "partial matching" between upconversion nanoparticle (UCNP) emission and absorption by photosensitizers (PSs) often leads to a theoretically reduced therapeutic efficiency in UC-based photodynamic therapy (PDT) strategies in which the chosen PSs have limited capabilities and are unable to utilize all the near-infrared-upconverted light. In this study, needle-like SnWO nanocrystals (SWs) with a broad UV-vis absorption region were synthesized to solve the problem. After covalent conjugation with UCNPs, all the UCNP-emitted light was effectively absorbed by SWs, triggering the type-I PDT process to activate ROS maxima. The unique nanostructure of the as-formed UCNP-SnWO nanohybrids (USWs) also enhanced the receiving light intensities of SW, which further boosted the antitumor efficacy. Meanwhile, the strong X-ray attenuation capacity of both tungsten and tin elements qualified the USWs as excellent radio-sensitizers for radiotherapy (RT) enhancement, which played a complementary role with PDT treatment because PDT-mediated induction arrested the cells in the G0-G1 cell cycle phase, and RT was more damaging toward cells in the G2/M phase. The remarkably enhanced UC-PDT/RT efficiency of USWs was next validated in vitro and in vivo, and the combined NIR light and ionizing irradiation treatment completely suppressed tumor growth, revealing its great potential as an efficient anticancer therapeutic agent against solid tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2017.11.013 | DOI Listing |
Viruses
December 2024
Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
Photodynamic inactivation (PDI) has been revealed as a valuable approach against viral infections because of the fast therapeutic effect and low possibility of resistance development. The photodynamic inhibition of the infectivity of human herpes simplex virus type 1 (HSV-1) strain Victoria at different stages of its reproduction was studied. PDI activity was determined on extracellular virions, on the stage of their adsorption to the Madin-Darby bovine kidney (MDBK) cell line and inhibition of the viral replication stage by application of two tetra-methylpyridiloxy substituted gallium and zinc phthalocyanines (ZnPcMe and GaPcMe) upon 660 nm light exposure with a light-emitting diode (LED 660 nm).
View Article and Find Full Text PDFPharmaceutics
December 2024
Laboratorio de Microbiología Celular, Centro de Ciencias Médicas aplicadas, Facultad de Medicina y Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 418, Santiago 8330546, Chile.
is a Gram-negative bacillus responsible for a wide variety of potentially fatal infections and, in turn, constitutes a critical agent of healthcare-associated infections. Moreover, is characterized by multi-drug-resistant (MDR) bacteria, such as extended-spectrum beta-lactamases (ESBL) and carbapenemase (KPC) producer strains, representing a significant health problem. Because resistances make it difficult to eradicate using antibiotics, antimicrobial photodynamic therapy (aPDT) promises to be a favorable approach to complementing conventional therapy against MDR bacteria.
View Article and Find Full Text PDFPharmaceutics
December 2024
School of Pharmacy, Nantong University, Nantong 226001, China.
Porphyrin's excellent biocompatibility and modifiability make it a widely studied photoactive material. However, its large π-bond conjugated structure leads to aggregation and precipitation in physiological solutions, limiting the biomedical applications of porphyrin-based photoactive materials. It has been demonstrated through research that fabricating porphyrin molecules into nanoscale covalent organic frameworks (COFs) structures can circumvent issues such as poor dispersibility resulting from hydrophobicity, thereby significantly augmenting the photoactivity of porphyrin materials.
View Article and Find Full Text PDFPharmaceutics
December 2024
Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia.
Since its discovery more than 100 years ago, photodynamic therapy (PDT) has become a potent strategy for the treatment of many types of cancer [...
View Article and Find Full Text PDFPharmaceutics
November 2024
Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil.
Background: Photodynamic therapy (PDT) is a treatment modality that uses light to activate a photosensitizing agent, destroying target cells. The growing awareness of the necessity to reduce or eliminate the use of mammals in research has prompted the search for safer toxicity testing models aligned with the new global guidelines and compliant with the relevant regulations.
Objective: The objective of this study was to assess the impact of PDT on alternative models to mammals, including in vitro three-dimensional (3D) cultures and in vivo, in invertebrate animals, utilizing a potent photosensitizer, 2-hydroxychalcone.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!