A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicted cumulative dose to firefighters and the offsite public from natural and anthropogenic radionuclides in smoke from wildland fires at the Savannah River Site, South Carolina USA. | LitMetric

The contaminated ground surface at Savannah River Site (SRS) is a result of the decades of work that has been performed maintaining the country's nuclear stockpile and performing research and development on nuclear materials. The volatilization of radionuclides during wildfire results in airborne particles that are dispersed within the smoke plume and may result in doses to downwind firefighters and the public. To better understand the risk that these smoke plumes present, we have characterized four regions at SRS in terms of their fuel characteristics and radiological contamination on the ground. Combined with general meteorological conditions describing typical and extreme burn conditions, we have simulated potential fires in these regions and predicted the potential radiological dose that could be received by firefighting personnel and the public surrounding the SRS. In all cases, the predicted cumulative dose was a small percent of the US Department of Energy regulatory limit (0.25 mSv). These predictions were conservative and assumed that firefighters would be exposed for the duration of their shift and the public would be exposed for the entire day over the duration of the burn. Realistically, firefighters routinely rotate off the firefront during their shift and the public would likely remain indoors much of the day. However, we show that even under worst-case conditions the regulatory limits are not exceeded. We can infer that the risks associated with wildfires would not be expected to cause cumulative doses above the level of concern to either responding personnel or the offsite public.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvrad.2017.10.017DOI Listing

Publication Analysis

Top Keywords

predicted cumulative
8
cumulative dose
8
offsite public
8
savannah river
8
river site
8
shift public
8
public
6
firefighters
4
dose firefighters
4
firefighters offsite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!