Quantitative proteomics study of host response to virulent and attenuated pseudorabies virus infection in mouse brain.

Biochim Biophys Acta Proteins Proteom

Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Wuhan, China. Electronic address:

Published: February 2018

Bartha, the pseudorabies virus (PRV) vaccine strain, is widely used in studies of neuronal circuit-tracing, due to its attenuated virulence and retrograde spreading. However, we know little regarding the molecular mechanisms of PRV infection and spreading between structurally connected neurons. In this study, we systematically analyzed the host brain proteomes after acute infection with PRV, attempting to identified the proteins involved in the processes. Mice were injected with PRV-Bartha and PRV-Becker (PRV-Bartha's wild-type parent strain) in the olfactory system, the proteomes of the brain and synaptosome were analyzed and compared at various infection intervals using mass spectrometry-based proteomics techniques. In all, we identified >100 PRV-infection regulated proteins at the whole-tissue level and the synaptosome level. While at whole-tissue level, bioinformatics analyses mapped most of the regulations to the inflammation pathways, at the synaptosome level, most of those to synaptic transmission, cargo transport and cytoskeleton organization. We established regulated protein networks demonstrating distinct cellular regulation pattern between the global and the synaptosome levels. Moreover, we identified a series of potentially PRV-strain-specific regulated proteins with diverse biological functions. This study may provide new clues for molecular mechanisms for PRV infection and spread.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbapap.2017.11.010DOI Listing

Publication Analysis

Top Keywords

pseudorabies virus
8
molecular mechanisms
8
mechanisms prv
8
prv infection
8
regulated proteins
8
whole-tissue level
8
synaptosome level
8
infection
5
quantitative proteomics
4
proteomics study
4

Similar Publications

Pseudorabies virus (PRV), causing Aujeszky's disease in swine, has important economic impact on the pig industry in China and even poses a threat to public health. Although this disease has been controlled by vaccination with PRV live attenuated vaccines (LAVs), the potency of PRV LAVs in inducing cellular immunity has not been well characterized. In this study, using PRV Bartha K61 strain (BK61), the most-used PRV LAVs, as a model, we re-examined the cellular immune response elicited by the BK61 in mice and pigs by multicolor flow cytometry.

View Article and Find Full Text PDF

Pseudorabies virus inhibits the unfolded protein response for viral replication during the late stages of infection.

Vet Microbiol

December 2024

National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.

Pseudorabies virus (PRV) poses a significant threat to the global swine breeding industry and public health, but how the virus transverses the host defense systems for efficient viral replication and pathogenesis remains unclear. Here, we report that PRV could inhibit the unfolded protein response (UPR), a critical component of host innate immunity against viral infection, to promote virus replication during the late infection stages. PERK was shown phosphorylated and active in PRV-infected cells, but the subsequent events were suppressed post virus infection, such as eIF2α phosphorylation, ATF4 expression, and the formation of stress granules (SGs).

View Article and Find Full Text PDF

Pseudorabies virus (PRV) is one of the most important infectious diseases which leads to significant economic losses in the global swine industry. The gE-deleted vaccine is widely used to prevent susceptible pigs from PRV infection. There is no report of the differentiation of PRV wild strain and vaccine strain by recombinase polymerase amplification (RPA) coupled with a lateral flow dipstick (LFD) method.

View Article and Find Full Text PDF

Development of a capsid protein-based ELISA for the detection of PCV2 antibodies in swine serum.

Pol J Vet Sci

December 2024

Key Laboratory of Animal Pathogen and Biosafety Education of the Ministry of Education, Zhengzhou 450000, China.

Porcine circovirus type 2 (PCV2) is the major causative agent of postweaning multisystemic wasting syndrome which leads to significant economic losses in the global swine industry. In China, there is a widespread dissemination of PCV2 infection in the pig population. Serological diagnosis of the disease is considered as an effective control measure.

View Article and Find Full Text PDF

Berbamine inhibits Pseudorabies virus in vitro and in vivo.

Vet Microbiol

December 2024

College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, China. Electronic address:

Pseudorabies virus (PRV) is a significant pathogen that causes acute infectious diseases in pigs, resulting in considerable economic losses for the global pig industry. The lack of effective control measures and vaccines against the circulating variants of PRV highlights the pressing need for novel treatment strategies. In this study, a screening of a natural product library identified Berbamine as a promising compound that inhibits PRV replication, with a selectivity index of 17.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!