Unlabelled: Hydrogel-based 3D cell cultures are an emerging strategy for the regeneration of cartilage. In an attempt to regenerate dysfunctional intervertebral discs, nucleus pulposus (NP) cells can be cultured in hydrogels of various kinds and physical properties. Stiffness sensing through focal adhesions is believed to direct chondrogenesis, but the mechanisms by which this works are largely unknown. In this study we compared focal adhesion formation and glycosaminoglycan (GAG) deposition by NP cells in a range of hydrogels. Using a focal adhesion kinase (FAK) inhibitor, we demonstrated that focal adhesion signaling is involved in the response of NP cells in hydrogels that contain integrin binding sites (i.e. methacrylated gelatin (gelMA) and type II collagen), but not in hydrogels deplete from integrin binding sites such as alginate and agarose, or CD44-binding hydrogels based on hyaluronic acid. As a result of FAK inhibition we observedenhanced proteoglycan production in gelMA, but decreased production in type II collagen hydrogels, which could be explained by alteration in cell fate as supported by the increase in the adipogenic marker peroxisome proliferator-activated receptor gamma (PPARy). Furthermore, GAG deposition was inversely proportional to polymer concentration in integrin-binding gelMA, while no direct relationship was found for the non-integrin binding gels alginate and agarose. This corroborates our finding that focal adhesion formation plays an important role in NP cell response to its surrounding matrix.
Statement Of Significance: Biomaterials are increasingly being investigated for regenerative medicine applications, including regeneration of the nucleus pulposus. Cells interact with their environment and are influenced by extracellular matrix or polymer properties. Insight in these interactions can improve regeneration and helps to understand degeneration processes. The role of focal adhesion formation in the regenerative response of nucleus pulposus cells is largely unknown. Therefore, the relation between materials, stiffness and focal adhesion formation is studied here.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2017.11.029 | DOI Listing |
Discov Oncol
January 2025
Department of Urology, Beijing TianTan Hospital, Capital Medical University, No. 119 South 4 Ring West Road, Fengtai District, 100070, Beijing, China.
Background: Although pentatricopeptide repeat domain 1 (PTCD1) has been found to modulate mitochondrial metabolic and oxidative phosphorylation, its contribution in the growth of clear cell renal cell carcinoma (ccRCC) remains unknown.
Methods: The Cancer Genome Atlas (TCGA) dataset was utilized to examine the transcriptional alterations, patient characteristics, clinical outcomes, as well as pathway activation of PTCD1. The Weighted Gene Co-expression Network Analysis (WGCNA) was performed to investigate potential genes that associated with PTCD1.
J Cell Mol Med
January 2025
The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China.
Pulmonary fibrosis is a pathological manifestation that occurs upon lung injury and subsequence aberrant repair with poor prognosis. However, current treatment is limited and does not distinguish different disease stages. Here, we aimed to study the differential functions of Axl, a receptor tyrosine kinase expressing on both macrophages and fibroblasts, in the whole course of pulmonary fibrosis.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Mechanobiology Institute Singapore, National University of Singapore, Singapore 117411, Singapore.
Focal adhesions (FAs) are force-bearing multiprotein complexes, whose nanoscale organization and signaling are essential for cell growth and differentiation. However, the specific organization of FA components to exert spatiotemporal activation of FA proteins for force sensing and transduction remains unclear. In this study, we unveil the intricacies of FA protein nanoarchitecture and that its dynamics are coordinated by a molecular scaffold protein, BNIP-2, to initiate downstream signal transduction for cardiomyoblast differentiation.
View Article and Find Full Text PDFArch Biochem Biophys
January 2025
Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea. Electronic address:
Background And Aims: Vascular smooth muscle cells are pivotal in atherosclerosis, transitioning from a contractile to a synthetic phenotype, which is associated with increased proliferation and inflammation. FRZB, a Wnt signaling modulator, has been implicated in vascular pathology, but its specific role in vascular smooth muscle cell phenotype modulation is not well understood. This study investigates the role of FRZB in regulating vascular smooth muscle cell phenotypes.
View Article and Find Full Text PDFMol Clin Oncol
February 2025
Department of Urology Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.
Disulfidptosis, which was recently identified, has shown promise as a potential cancer treatment. Nonetheless, the precise role of long non-coding RNAs (lncRNAs) in this phenomenon is currently unclear. To elucidate their significance in bladder cancer (BLCA), a signature of disulfidptosis-related lncRNAs (DRlncRNAs) was developed and their potential prognostic significance was explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!