Ghrelin, a 28-amino acid peptide hormone, has protective effects on neuronal cells. The present study aimed to examine the neuroprotective effects of ghrelin on the rat retinal ganglion cells in the rotenone-induced in vitro model of Parkinson's disease (PD). Cell viability and cell apoptosis were determined by MTT assay and flow cytometry, respectively. Mitochondrial functions were detected by mitochondrial complex I activity assay and mitochondrial membrane potential (MMP) assay. The mRNA and protein expression levels were determined by qRT-PCR and western blot, respectively. Rotenone significantly suppressed cell viability and increased cell apoptosis, also decreased the mitochondrial complex I activity as well as MMP in rat retinal ganglion cell line (RGC-5). Growth hormone secretagogue receptor (Ghsr) siRNA transfection significantly suppressed the expression of Ghsr in RGC-5 cells. Ghrelin treatment attenuated the effects of rotenone-induced changes in cell viability, cell apoptosis and mitochondrial functions in RGC-5 cells. Post-transcriptional suppression by Ghsr siRNA transfection and treatment with GHS-R antagonist, YIL781, both significantly attenuated the effects of ghrelin in RGC-5 cells. Rotenone decreased the protein levels of Bcl-2 and increased the protein levels of Bax, cleaved caspase-3 and cleaved caspase-9, and this effect was reversed by ghrelin treatment. Ghrelin also prevented the inhibitory effects of rotenone on the AKT-mTOR signaling. The effects of ghrelin on the rotenone-induced changes in apoptosis-related protein levels and AKT-mTOR signaling were attenuated by Ghsr siRNA transfection and treatment with YIL781 in the RGC-5 cells. In addition, both rapamycin and AKT inhibitor IV pre-treatment significantly attenuated the effects of ghrelin on rotenone-induced changes in cell viability and cell apoptosis. In conclusion, ghrelin by acting on the GSH-R to protect rat retinal ganglion cells against rotenone via inhibiting apoptosis and restore mitochondrial functions in RGC-5 cells, and this effect was partially associated with the AKT-mTOR signaling pathway in RGC-5 cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.npep.2017.11.007 | DOI Listing |
Insect Sci
September 2024
Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China.
J Med Food
November 2024
Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Chinese Academy of Sciences, Changchun, China.
Commun Biol
July 2024
Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China.
Glaucoma is the leading cause of irreversible blindness and is characterized by progressive retinal ganglion cell (RGC) loss and retinal nerve fiber layer thinning. Currently, no existing treatment is effective for the preservation of RGCs. MicroRNA-22-3p (miR22) and small extracellular vesicles derived from mesenchymal stem cells (MSC-sEVs) have neuroprotective effects.
View Article and Find Full Text PDFInt J Mol Sci
March 2024
Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
Small-molecule positive allosteric modulator 1 (SPAM1), which targets pituitary adenylate cyclase-activating polypeptide receptor 1 (PAC1-R), has been found to have a neuroprotective effect, and the underlying mechanism was explored in this study. First, using a D-galactose (D-gal)-induced aging mouse model, we confirmed that SPAM1 improves the structure of the hippocampal dentate gyrus and restores the number of neurons. Compared with D-gal model mice, SPAM1-treated mice showed up-regulated expression of Sirtuin 6 (SIRT6) and Lamin B1 and down-regulated expression of YinYang 1 (YY1) and p16.
View Article and Find Full Text PDFToxicol Appl Pharmacol
March 2024
Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!