Tumor necrosis factor-α is an important pro-inflammatory cytokine having a key role in hosts defensive process of immune systems and its over expression led to a diverse range of inflammatory diseases such as Rheumatoid arthritis, Cronh's disease, psoriasis, etc. This paper describes our medicinal chemistry efforts on imidazo[1,2-b]pyridazine scaffold: design, synthesis and biological evaluation. By the introducing sulfonamide functionality at 3 positions and substituting 6 positions with (hetero)-aryl groups', a small library of compounds was prepared. All synthesized compounds were screened for lipopolysaccharide (LPS) mediated TNF-α production inhibitory activity. Biological data revealed that the majority of the compounds of this series showed moderate to potent TNF-α production inhibitory activity. Compound 5u and 5v are the most potent compounds from the series with activity of IC = 0.5 µM and 0.3 µM respectively. A short SAR demonstrates that 3-sulfonyl-4-arylpiperidine-4-carbonitrile moiety on imidazo[1,2-b]pyridazine showed better activity compared to the 3-(4-aryllpiperazin-1-yl) sulfonyl) in hPBMC assay. The molecular modeling studies revealed that the potent TNF-α production inhibitory activity 5v due to the extra stability of complex because of an extra pi-pi (π-π) stacking, hydrogen-bonding interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2017.11.026DOI Listing

Publication Analysis

Top Keywords

tnf-α production
16
production inhibitory
12
inhibitory activity
12
compounds series
8
potent tnf-α
8
activity
5
synthesis vitro
4
vitro evaluations
4
evaluations 6-hetero-aryl-imidazo[12-b]pyridazine-3-sulfonamide's
4
6-hetero-aryl-imidazo[12-b]pyridazine-3-sulfonamide's inhibitor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!