A novel method for assessment of fragmentation and beam-material interactions in helium ion radiotherapy with a miniaturized setup.

Phys Med

Heidelberg University Hospital, Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), Division of Medical Physics in Radiation Oncology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.

Published: October 2017

Radiotherapy with protons and carbon ions enables to deliver dose distributions of high conformation to the target. Treatment with helium ions has been suggested due to their physical and biological advantages. A reliable benchmarking of the employed physics models with experimental data is required for treatment planning. However, experimental data for helium interactions is limited, in part due to the complexity and large size of conventional experimental setups. We present a novel method for the investigation of helium interactions with matter using miniaturized instrumentation based on highly integrated pixel detectors. The versatile setup consisted of a monitoring detector in front of the PMMA phantom of varying thickness and a detector stack for investigation of outgoing particles. The ion type downstream from the phantom was determined by high-resolution pattern recognition analysis of the single particle signals in the pixelated detectors. The fractions of helium and hydrogen ions behind the used targets were determined. As expected for the stable helium nucleus, only a minor decrease of the primary ion fluence along the target depth was found. E.g. the detected fraction of hydrogen ions on axis of a 220MeV/u He beam was below 6% behind 24.5cm of PMMA. Monte-Carlo simulations using Geant4 reproduce the experimental data on helium attenuation and yield of helium fragments qualitatively, but significant deviations were found for some combinations of target thickness and beam energy. The presented method is promising to contribute to the reduction of the uncertainty of treatment planning for helium ion radiotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmp.2017.09.126DOI Listing

Publication Analysis

Top Keywords

experimental data
12
helium
9
novel method
8
helium ion
8
ion radiotherapy
8
treatment planning
8
data helium
8
helium interactions
8
hydrogen ions
8
method assessment
4

Similar Publications

This study examined the effect of lymphedema self-care patient school education on patient functionality, quality of life, body value, and lymphedema volume in patients with lower extremity lymphedema. The study utilized a single-group quasi-experimental design. The study sample included 21 patients with primary and secondary lower extremity lymphedema.

View Article and Find Full Text PDF

Access to trained lymphedema care providers remains limited making patient-driven management solutions essential. One such option, sequential intermittent pneumatic compression (IPC), has gained traction as a supportive tool for lymphedema management. While newer IPC devices and innovative applications are being introduced to the market, questions regarding the safety and efficacy of this technology persist.

View Article and Find Full Text PDF

Background: Healthcare expenditures have risen in middle- and high-income countries. One of the potential contributors is the overuse of diagnostics. I explore whether medical imaging is overused when privately owned clinics in Finland treat patients with voluntary private health insurance (VPHI).

View Article and Find Full Text PDF

Investigate the impact of antimicrobial photodynamic therapy (aPDT) using different photosensitizers (PSs) such as indocyanine green (IG), curcumin (CC), and methylene blue (MB), with or without intracanal application of calcium hydroxide (CH), on the push-out bond strength of glass-fiber posts (GFPs) to intraradicular dentin, the chemical composition of the root substrate, and the sealing of the adhesive interface across different thirds of intraradicular dentin. A total of 112 bovine teeth underwent biomechanical preparation and were divided into eight experimental groups (n = 14 each): Negative control with deionized water; positive control with deionized water + CH; IG group with indocyanine green and infrared laser; IG + CH group; CC group with curcumin and blue LED; CC + CH group; MB group with methylene blue and red laser; and MB + CH group. The push-out bond strength was measured using a universal testing machine (n = 8), and scanning electron microscopy characterized the fracture patterns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!