Epigenetic and microenvironmental alterations in bone marrow associated with ROS in experimental aplastic anemia.

Eur J Cell Biol

Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C.R Avenue, Kolkata, 700073, West Bengal, India, India. Electronic address:

Published: January 2018

Aplastic anemia or bone marrow failure often develops as an effect of chemotherapeutic drug application for the treatment of various pathophysiological conditions including cancer. The long-term bone marrow injury affects the basic hematopoietic population including hematopoietic stem/progenitor cells (HSPCs). The present study aimed in unearthing the underlying mechanisms of chemotherapeutics mediated bone marrow aplasia with special focus on altered redox status and associated effects on hematopoietic microenvironment and epigenetic status of hematopoietic cells. The study involves the development of busulfan and cyclophosphamide mediated mouse model for aplastic anemia, characterization of the disease with blood and marrow analysis, cytochemical examinations of bone marrow, flowcytometric analysis of hematopoietic population and microenvironmental components, determination of ROS generation, apoptosis profiling, expressional studies of Notch-1 signaling cascade molecules, investigation of epigenetic modifications including global CpG methylation of DNA, phosphorylation of histone-3 with their effects on bone marrow kinetics and expressional analysis of the anti-oxidative molecules viz; SOD-2 and Sdf-1. Severe hematopoietic catastrophic condition was observed during aplastic anemia which involved peripheral blood pancytopenia, marrow hypocellularity and decreased hematopoietic stem/progenitor population. Generation of ROS was found to play a central role in the cellular devastation in aplastic marrow which on one hand can be correlated with the destruction of hematopoiesis supportive niche components and alteration of vital Notch-1 signaling and on other hand was found to be associated with the epigenetic chromatin modifications viz; global DNA CpG hypo-methylation, histone-3 phosphorylation promoting cellular apoptosis. Decline of anti-oxidant components viz; Sdf-1 and SOD-2 hinted towards the irreversible nature of the oxidative damage during marrow aplasia. Collectively, the findings hinted towards the mechanistic correlation among ROS generation, microenvironmental impairment and epigenetic alterations that led to hematopoietic catastrophe under aplastic stress. The findings may potentiate successful therapeutic strategy development for the dreadful condition concerned.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejcb.2017.11.003DOI Listing

Publication Analysis

Top Keywords

bone marrow
24
aplastic anemia
16
marrow
10
hematopoietic
8
hematopoietic population
8
hematopoietic stem/progenitor
8
marrow aplasia
8
ros generation
8
notch-1 signaling
8
bone
6

Similar Publications

Knockdown of miR-182 changes the sensitivity of triple-negative breast cancer cells to cisplatin.

Nucleosides Nucleotides Nucleic Acids

January 2025

Division of Hematology, Department of Internal Medicine, Medical Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.

Breast cancer is the most common malignancy that affects women. MicroRNAs (miRNAs) play an essential role in cancer therapy and regulate many biological processes such as cisplatin resistance. The study's objective was to determine whether miR-182 dysregulation was the cause of cisplatin resistance in TNBC cell line MDA-MB-231.

View Article and Find Full Text PDF

Background: Midfoot pain is common but poorly understood, with radiographs often indicating no anomalies. This study aimed to describe bone, joint and soft tissue changes and to explore associations between MRI-detected abnormalities and clinical symptoms (pain and disability) in a group of adults with midfoot pain, but who were radiographically negative for osteoarthritis.

Methods: Community-based participants with midfoot pain underwent an MRI scan of one foot and scored semi-quantitatively using the Foot OsteoArthritis MRI Score (FOAMRIS).

View Article and Find Full Text PDF

Evaluation of Cartilage-Like Matrix Formation in a Nucleus Pulposus-Derived Cartilage Analog Scaffold.

J Biomed Mater Res B Appl Biomater

January 2025

The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.

The formation of fibrocartilage in microfracture (MFX) severely limits its long-term outlook. There is consensus in the scientific community that the placement of an appropriate scaffold in the MFX defect site can promote hyaline cartilage formation and improve therapeutic benefit. Accordingly, in this work, a novel natural biomaterial-the cartilage analog (CA)-which met criteria favorable for chondrogenesis, was evaluated in vitro to determine its candidacy as a potential MFX scaffold.

View Article and Find Full Text PDF

Background/objectives: Acute myeloid leukemia (AML) is an aggressive neoplasm. Although most patients respond to induction therapy, they commonly relapse due to recurrent disease in the bone marrow microenvironment (BMME). So, the disruption of the BMME, releasing tumor cells into the peripheral circulation, has therapeutic potential.

View Article and Find Full Text PDF

Background: Renal adverse drug reactions (ADRs) associated with tyrosine kinase inhibitors (TKIs) in the treatment of chronic myeloid leukemia (CML) are relatively rare, and there is currently no standardized protocol for their management. Therefore, this study aimed to summarize renal ADRs related to TKIs use in CML and propose an evidence-based approach to monitor and manage these ADRs.

Methods: A systematic literature review was performed to identify renal ADRs associated with TKIs in CML.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!