The completion of the zebrafish genome sequence and advances in miniaturization and multiplexing were essential to the creation of techniques such as RNA-seq, ChIP-seq, and high-throughput behavioral and chemical screens. Multiplexing was also instrumental in the recent enhancement of the classic yeast one-hybrid interaction techniques to provide unprecedented discovery capabilities for protein-DNA interactions. Unfortunately its use for zebrafish research is currently hampered by the lack of an open reading frame (ORF) clone collection. As a first step toward a complete collection, we describe a small library of transcriptional regulatory proteins comprising 142 ORFs and its potential applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6112160PMC
http://dx.doi.org/10.1089/zeb.2017.1486DOI Listing

Publication Analysis

Top Keywords

zebrafish transcription
4
transcription factor
4
factor orfeome
4
orfeome gene
4
gene discovery
4
discovery regulatory
4
regulatory network
4
network elucidation
4
elucidation completion
4
completion zebrafish
4

Similar Publications

Unlabelled: During vertebrate development, the heart primarily arises from mesoderm, with crucial contributions from cardiac neural crest cells that migrate to the heart and form a variety of cardiovascular derivatives. Here, by integrating bulk and single cell RNA-seq with ATAC-seq, we identify a gene regulatory subcircuit specific to migratory cardiac crest cells composed of key transcription factors and . Notably, we show that cells expressing the canonical neural crest gene are essential for proper cardiac regeneration in adult zebrafish.

View Article and Find Full Text PDF

Endogenous retroviral (ERV) RNA is highly expressed in cancer, although the molecular causes and consequences remain unknown. We found that ZC3H18 (Z18), a component of multiple nuclear RNA surveillance complexes, has recurrent truncating mutations in cancer. We show that Z18 mutations are oncogenic and that Z18 plays an evolutionarily conserved role in nuclear RNA surveillance of ERV RNA.

View Article and Find Full Text PDF

Neuromesodermal progenitors (NMPs) are a vertebrate cell type that contribute descendants to both the spinal cord and the mesoderm. The undifferentiated bipotential NMP state is maintained when both Wnt signaling is active and Sox2 is present. We used transgenic reporter lines to live-image both Wnt activity and Sox2 levels in NMPs and observed a unique cellular ratio in NMPs compared to NMP-derived mesoderm or neural tissue.

View Article and Find Full Text PDF

The cellular and molecular mechanisms underlying lymphocyte development are diverse among teleost species. Although recent scRNA-seq analyses of zebrafish hematopoietic cells have advanced our understanding of teleost hematopoiesis, comparative studies using another genetic model, medaka, which is evolutionarily distant among teleosts, is useful for understanding commonality and species-specificity in teleosts. In order to gain insight into how different molecular and cellular mechanisms of lymphocyte development in medaka and zebrafish, we established a () mutant medaka, which exhibited defects in V(D)J rearrangement of lymphocyte antigen receptor genes, accordingly lacking mature B and T cells.

View Article and Find Full Text PDF

Van der Woude syndrome (VWS) is an autosomal dominant disorder characterized by lower lip pits and orofacial clefts (OFCs). With a prevalence of approximately 1 in 35,000 live births, it is the most common form of syndromic clefting and may account for ~2% of all OFCs. The majority of VWS is attributed to genetic variants in IRF6 (~70%) or GRHL3 (~5%), leaving up to 25% of individuals with VWS without a molecular diagnosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!