Controlled dimerization of Mn single-molecule magnets (SMMs) was achieved via a synthetic route involving a competition between bridging and terminal ligands, namely, diols and alcohols. The reaction using a 1:1 ratio of the competing ligands resulted in the isolation of a new family of covalently linked dimers of Mn SMMs. This is the first step toward the controlled growth of SMM oligomeric arrays.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.7b02640DOI Listing

Publication Analysis

Top Keywords

controlled dimerization
8
dimerization single-molecule
8
single-molecule magnets
8
magnets controlled
4
magnets smms
4
smms achieved
4
achieved synthetic
4
synthetic route
4
route involving
4
involving competition
4

Similar Publications

Background and objective The use of ivermectin and nitazoxanide in the treatment of coronavirus disease 2019 (COVID-19) has been a subject of controversy. In this study, we aimed to describe our clinical experience in treating COVID-19 patients with these drugs in Mexico. Material and methods The study involved out- and inpatient clinical assessments of COVID-19 patients conducted in Mexico City from September 2020 to November 2021.

View Article and Find Full Text PDF

Assembly of the Skirt-Like Giant Molybdenum Blue Cluster {Mo} from Dimerization of {Mo} Featuring an Octameric Skeleton.

Inorg Chem

December 2024

Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, No.30, Shuangqing Avenue, Beijing, Haidian 100084, China.

Cyclic compounds are appealing owing to their intrinsic porous structures and facile accessibility as building blocks (BBs) for fabricating high-order assemblies. Nevertheless, the modular synthesis of such molecular entities and their subsequent controlled assembly are still very challenging. Herein, we report the synthesis of a gigantic molybdenum blue (MB) wheel {Mo} (), featuring a skirt-shaped structure dimerized from {Mo}.

View Article and Find Full Text PDF

Targeting human plasma cells using small molecule regulated BCMA CAR T cells eliminates circulating antibodies in humanized mice.

Mol Ther

December 2024

Program for Cell and Gene Therapy and Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA, 98105, USA; Department of Immunology, University of Washington, Seattle, WA, 98109, USA. Electronic address:

Pathogenic long-lived plasma cells (LLPCs) secrete autoreactive antibodies, exacerbating autoimmune diseases and complicating solid organ transplantation. Targeted elimination of the autoreactive B-cell pool represents a promising therapeutic strategy, yet current treatment modalities fall short in depleting mature plasma cells. Here, we demonstrate that chimeric antigen receptor (CAR) T cells, targeting BCMA utilizing a split-receptor design, offer a controlled and effective therapeutic strategy against LLPCs.

View Article and Find Full Text PDF

ConspectusSynthetic extracellular matrix (ECM) engineering is a highly interdisciplinary field integrating materials and polymer science and engineering, chemistry, cell biology, and medicine to develop innovative strategies to investigate and control cell-matrix interactions. Cellular microenvironments are complex and highly dynamic, changing in response to injury and disease. To capture some of these critical dynamics , biomaterial matrices have been developed with tailorable properties that can be modulated in the presence of cells.

View Article and Find Full Text PDF

Regulating Charge Separation Via Periodic Array Nanostructures for Plasmon-Enhanced Water Oxidation.

Adv Mater

December 2024

State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China.

Plasmonic resonance intensity in metallic nanostructures plays a crucial role in charge generation and separation, directly affecting plasmon-induced photocatalytic activity. Engineering strategies to enhance plasmonic effects involve designing specific nanostructures, such as triangular nanoplates with sharp corners or dimer nanostructures with hot spots. However, these approaches often lead to a trade-off between enhanced plasmonic intensity and resonance energy, which ultimately determines local charge density and photocatalytic performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!