A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sample Concentration of Charged Small Molecules and Peptides in Capillary Electrophoresis by Micelle to Cyclodextrin Stacking. | LitMetric

A stacking approach in capillary electrophoresis based on the reversal of the analytes' effective electrophoretic velocities at a dynamic stacking boundary formed between charged micelles (i.e., from long chain ionic surfactants) and neutral cyclodextrins (i.e., native α-, β-, or γ-cyclodextrin) is presented. The approach was demonstrated by the long injection of samples in a micellar solution followed by injection of a cyclodextrin solution zone, and then separation by co-electro-osmotic flow capillary zone electrophoresis. The reversal is caused by the formation of stable cyclodextrin-surfactant complexes at the boundary that significantly decreased the retention factor of the analytes in the presence of a micellar pseudostationary phase. The dynamic boundary was formed at the cyclodextrin zone as the micelles penetrated this zone. Under optimum conditions, the boundary disappears, and the stacking ends when all the micelles have electrophoretically migrated to the boundary. Cationic and anionic small molecules were enriched using oppositely charged micelles from sodium dodecyl sulfate and cetyltrimethylammonium bromide, respectively. There were 1-2 orders of concentration magnitude improvement in analyte detection, which is expected in stacking with hydrodynamic injection. The improvements in the peak signals (height/corrected area) were up to 236/445 and 101/76 for the cationic and anionic analytes tested, respectively. Linearity (r) and repeatability (%RSD of migration time, peak height, and corrected peak area) under the chosen stacking conditions (cations/anions) were ≥0.998/≥0.995 and ≤3.8%/≤5.7%, respectively. The stacking approach was also implemented in the direct analysis of peptides from trypsin digested bovine serum albumin.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.7b03700DOI Listing

Publication Analysis

Top Keywords

small molecules
8
capillary electrophoresis
8
stacking approach
8
boundary formed
8
charged micelles
8
cationic anionic
8
stacking
7
boundary
5
sample concentration
4
concentration charged
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!