EXOPLEXs: Chimeric Drug Delivery Platform from the Fusion of Cell-Derived Nanovesicles and Liposomes.

Biomacromolecules

NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS), 28 Medical Drive, #05-01, Singapore 117456.

Published: January 2018

Cell-derived nanovesicles (CDNs) have been recently investigated as novel drug delivery systems (DDSs), due to the preservation of key features from the cell membrane of their precursor cells, which are responsible for an efficient cellular uptake by target cells. However, CDNs suffer from low drug loading efficiencies as well as challenges in functionalization compared to conventional DDS like liposomes. Here, we describe the first study proposing the fusion of CDNs with liposomes to form EXOPLEXs. We report the preservation of cell membranes from precursor cells similarly to CDNs, as well as high loading efficiencies of more than 65% with doxorubicin hydrochloride, a model chemotherapeutic drug. The doxorubicin-loaded EXOPLEXs (DOX-EXO) also demonstrated a higher in vitro cell killing effect than liposomes, while EXOPLEXs alone did not show any remarkable cytotoxicity. Taken together, these results illustrate the potential of EXOPLEXs as a novel DDS for targeted delivery of chemotherapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.7b01176DOI Listing

Publication Analysis

Top Keywords

drug delivery
8
cell-derived nanovesicles
8
precursor cells
8
cells cdns
8
loading efficiencies
8
exoplexs
5
exoplexs chimeric
4
drug
4
chimeric drug
4
delivery platform
4

Similar Publications

Introduction: The pursuit of linear dosage in pharmacy is essential for achieving consistent therapeutic release and enhancing patient compliance. This review provides a comprehensive summary of zero-order drug delivery systems, with a particular focus on reservoir-based systems emanated from different microfabrication technologies.

Areas Covered: The consideration of recent advances in drug delivery systems is given to encompass the key areas including the importance of achieving a constant drug release rate for therapeutic applications.

View Article and Find Full Text PDF

Background: Lamotrigine clearance can change drastically in pregnant women with epilepsy (PWWE) making it difficult to assess the need for dosing adjustments. Our objective was to characterize lamotrigine pharmacokinetics in PWWE during pregnancy and postpartum along with a control group of nonpregnant women with epilepsy (NPWWE).

Methods: The Maternal Outcomes and Neurodevelopmental Effects of Antiepileptic Drugs (MONEAD) study was a prospective, observational, 20 site, cohort study conducted in the United States (December 2012 and February 2016).

View Article and Find Full Text PDF

Charge Regulation-Enhanced Type I Photosensitizer-Loaded Hydrogel Dressing for Hypoxic Bacterial Inhibition and Biofilm Elimination.

ACS Nano

January 2025

State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.

Biofilm-induced chronic bacterial infections represent a significant challenge in modern medicine due to their resistance to conventional antibiotic treatments. Although photodynamic therapy (PDT) has emerged as a promising antibiotic-free antibacterial strategy, the hypoxic condition within biofilms and the lack of an effective local drug delivery system have limited the clinical effectiveness of photosensitizer (PS) agents. Herein, we propose a type of charge regulation-enhanced type I PS-loaded hydrogel dressing for treating biofilm infection.

View Article and Find Full Text PDF

Background: Non-adherence to medication remains a persistent and significant challenge, with profound implications for patient outcomes and the long-term sustainability of healthcare systems. Two decades ago, the World Health Organization (WHO) dedicated its seminal report to adherence to long-term therapies, catalysing notable changes that advanced both research and practice in medication adherence. The aim of this paper was to identify the most important progress made over the last 2 decades in medication adherence management and to initiate a discussion on future objectives, suggesting priority targets for the next 20 years.

View Article and Find Full Text PDF

Background: Previous microbiological investigations have demonstrated a significant correlation between complex (CKC) infection and mastitis. Recent studies have confirmed the existence of the CKC, with () identified as the primary infectious agent. Examining the incidence of CKC in cases of severe non-lactational mastitis, alongside the clinical characteristics of infected patients, as well as evaluating the drug sensitivity testing protocols for CKC, can provide a more robust foundation for the diagnosis and treatment of CKC infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!