Functionalized poly(ethylene dioxythiophene) (f-PEDOT) was copolymerized with two vinyl monomers of different hydrophilicity, acrylic acid and hydroxyethyl methacrylate, to produce electroconductive hydrogels with a range of physical and electronic properties. These hydrogels not only possessed tailored physical properties, such as swelling ratios and mechanical properties, but also displayed electroactivity dependent on the chemical composition of the network. Raman spectroscopy indicated that the functional PEDOT in the hydrogels is in an oxidized form, most likely accounting for the good electrochemical response of the hydrogels observed in physiological buffer. In vitro cell studies showed that cardiac cells respond differently when seeded on hydrogel substrates with different compositions. This study presents a facile approach for the fabrication of electroconductive hydrogels with a range of properties, paving the way for scaffolds that can meet the requirements of different electroresponsive tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.7b15019 | DOI Listing |
Nanomaterials (Basel)
January 2025
Renewable Energy Laboratory, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan.
Zwitterionic polymers have garnered significant attention for their distinctive properties, such as biocompatibility, antifouling capabilities, and resistance to protein adsorption, making them promising candidates for a wide range of applications, including drug delivery, oil production inhibitors, and water purification membranes. This study reports the synthesis and characterization of zwitterionic monomers and polymers through the modification of linear, vinyl, and aromatic heterocyclic functional groups via reaction with 1,3-propanesultone. Four zwitterionic polymers with varying molecular structures-ranging from linear to five and six membered ring systems-were synthesized: poly(sulfobetaine methacrylamide) (pSBMAm), poly(sulfobetaine-1-vinylimidazole) (pSB1VI), poly(sulfobetaine-2-vinylpyridine) (pSB2VP), and poly(sulfobetaine-4-vinylpyridine) (pSB4VP).
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac F-33600, France. Electronic address:
Plastic products contain complex mixtures of chemical compounds that are incorporated into polymers to improve material properties. Besides the intentional chemical additives, other compounds including residual monomers and non-intentionnaly added substances (NIAS) as well as sorbed pollutants are usually also present in aged plastic. Since most of these substances are only loosely bound to the polymer via non-covalently interactions, i.
View Article and Find Full Text PDFMolecules
December 2024
Syensqo, Centre de Recherche et Innovation Aubervilliers, 52 Rue de la Haie Coq, 93308 Aubervilliers Cedex, France.
Rhodixan A1 is the trade name for -ethyl -(1-methoxycarbonylethyl)dithiocarbonate, a RAFT/MADIX agent used by Syensqo to produce block copolymer additives for aqueous formulations on an industrial scale. Chain transfer coefficients to Rhodixan A1 determined for 25 different styrenic, acrylate, and acrylamide monomers were relatively low (0.6 < C < 3.
View Article and Find Full Text PDFSci Total Environ
January 2025
Zero Waste Europe, Rue du Commerce 31, 1000 Brussels, Belgium.
Polyvinyl chloride (PVC), a commonly used plastic across Europe, poses a number of risks at various stages of its life cycle. The carcinogenicity of PVC monomer, the need to use high number and volume of problematic additives, the easiness of fragmentation compared to other thermoplastics, the high volume of use in everyday products and the resulting extent to which European population is potentially exposed to both microplastics and chemicals and, finally, continuous problems during waste management, have raised concerns about impacts of PVC on human health and the environment for decades. As far back as in 2000, the European Commission recognized that PVC causes a wide range of serious problems for the environment and human health.
View Article and Find Full Text PDFJ Org Chem
January 2025
Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany.
Xanthine nucleosides play a significant role in the expansion of the four-letter genetic code. Herein, 7-functionalized 8-aza-7-deazaxanthine ribo- and 2'-deoxyribonucleosides are described. 2-Amino-6-alkoxy nucleosides were converted to halogenated 8-aza-7-deazaxanthine nucleosides by deamination followed by hydroxy/alkoxy substitution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!