A new water soluble and fluorogenic probe (L) that can demonstrate a specific ratiometric detection of a SO derivative (SO) in 100% aqueous medium and live cells has been designed and synthesized. The detection process can be visualized by the naked eye, as the orange-red fluorescence of L turns into a strong blue fluorescence upon interaction with SO. L displayed several beneficial attributes such as detection in complete aqueous medium, extremely fast response time along with high selectivity and sensitivity. The ratiometric sensing was attributed to the selective nucleophilic addition reaction of SO with L. The probe was further used to develop a low cost microfluidic sensor device (μPAD). The probe was biocompatible and its potential to sense SO in mitochondria was captured in live HeLa cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7an01368j | DOI Listing |
Sci Rep
December 2024
Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia.
Modifying ZnO nanorods with graphene oxide (GO) is crucial for enhancing photocatalytic degradation by boosting the concentration of reactive oxygen species (ROS) in the reaction medium. In this study, we present a straightforward chemical synthesis of ZnO nanorods embedded on GO, forming a novel nanocomposite, GOZ. This composite serves as an efficient photocatalyst for the sunlight-driven degradation of methylene blue (MB) and ciprofloxacin (CIP).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Agricultural Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
This study aims to explore the redispersibility of dehydrated nanocellulose with p-toluenesulfonic acid (p-TsOH) fractionated lignin as an eco-friendly and cost-effective capping agent, to cope with the challenge of irreversible agglomeration and thus loss of nanoscale of nanocellulose upon dehydration. The intermixing of nanocellulose and p-TsOH fractionated lignin was achieved using an aqueous ethanol solution as the medium and films of lignin-blending cellulose nanofibers (L + CNF) with excellent redispersing properties were obtained after facile air-drying. With 0.
View Article and Find Full Text PDFJ Mol Model
December 2024
Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Avenida Ferrocarril San Rafael Atlixco, Número 186, Colonia Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, Código Postal 09310, Ciudad de Mexico, Mexico.
Context: Antioxidants are known to play a beneficial role in human health. Caffeic acid has been previously recognized as efficient in this context. However, such a capability can be enhanced through structural modification.
View Article and Find Full Text PDFGels
December 2024
School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China.
During deepwater drilling, the low mudline temperatures and narrow safe density window pose serious challenges to the safe and efficient performance of deepwater water-based drilling fluids. Low temperatures can lead to physical and chemical changes in the components of water-based drilling fluids and the behavior of low temperature gelation. As a coarse dispersion system, water-based drilling fluid has a complex composition of dispersed phase and dispersing medium.
View Article and Find Full Text PDFGels
December 2024
Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, E41011 Sevilla, Spain.
The main objective of this work is to investigate the influence of shear on the rheological properties and physical stability of aqueous dispersions of flaxseed fiber. The variable to consider will be the homogenization rate in two different rotor-stator homogenizers, Ultraturrax T50 or T25. In order to achieve the proposed objective, small amplitude oscillatory tests, flow curves, and multiple light scattering measurements were carried out.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!