A Small Molecule Nanodrug by Self-Assembly of Dual Anticancer Drugs and Photosensitizer for Synergistic near-Infrared Cancer Theranostics.

ACS Appl Mater Interfaces

Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.

Published: December 2017

Phototherapy including photodynamic therapy (PDT) and photothermal therapy (PTT) has attracted great attention. However, applications of some photosensitizers remain an obstacle by their poor photostability. To enhance the treatment efficiency of photosensitizers and tumor theranostic effect, herein, we reported a novel carrier-free, theranostic nanodrug by self-assembly of small molecule dual anticancer drugs and photosensitizer for tumor targeting. The developed carrier-free small molecule nanodrug delivery system was formed by hydrophobic ursolic acid, paclitaxel, and amphipathic indocyanine green (ICG) associated with electrostatic, π-π stacking, and hydrophobic interactions exhibiting water stability. The self-assembling of ICG on the dual anticancer nanodrug significantly enhanced water solubility of hydrophobic anticancer drugs and ICG photostability contributing to long-term near-infrared (NIR) fluorescence imaging and effective chemophototherapy of tumor. The in vivo NIR fluorescence imaging showed that the theranostic nanodrug could be targeted to the tumor site via a potential enhanced permeability and retention effect proving the efficient accumulation of nanoparticles in the tumor site. Dramatically, chemophototherapy of tumor-bearing mice in vivo almost completely suppressed tumor growth and no tumor recurrence was observed. Encouraged by its carrier-free, prominent imaging and effective therapy, the small molecule nanodrug via self-assembly will provide a promising strategy for synergistic cancer theranostics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b14755DOI Listing

Publication Analysis

Top Keywords

small molecule
16
molecule nanodrug
12
nanodrug self-assembly
12
dual anticancer
12
anticancer drugs
12
drugs photosensitizer
8
cancer theranostics
8
theranostic nanodrug
8
nir fluorescence
8
fluorescence imaging
8

Similar Publications

Overexpressed AXL kinase is involved in various human malignancies, which incurs tumor progression, poor prognosis, and drug resistance. Suppression of the aberrant AXL axis with genetic tools or small-molecule inhibitors has achieved valid antitumor efficacies in both preclinical studies and clinical antitumor campaigns. Herein we will report the design, synthesis, and structure-activity relationship (SAR) exploration of a series of anilinopyrimidine type II AXL inhibitors.

View Article and Find Full Text PDF

Protein hydrolysis targeted chimeras (PROTACs) represent a different therapeutic approach, particularly relevant for overcoming challenges associated with traditional small molecule inhibitors. These challenges include targeting difficult proteins that are often deemed "undruggable" and addressing issues of acquired resistance. PROTACs employ the body's own E3 ubiquitin ligases to induce the degradation of specific proteins of interest (POIs) through the ubiquitin-proteasome pathway.

View Article and Find Full Text PDF

Persistent oxidative stress following bone defects significantly impedes the repair of bone tissue. Designing an antioxidative hydrogel with a suitable mechanical strength can help alter the local microenvironment and promote bone defect healing. In this work, α-lipoic acid (LA), a natural antioxidant small molecule, was chemically cross-linked with lipoic acid-functionalized poly(ethylene glycol) (PEG, = 6k or 10k) in sodium bicarbonate solution, to prepare LA-PEG hydrogels (LP, = 6k or 10k).

View Article and Find Full Text PDF

A patent review of xanthine oxidase inhibitors (2021-present).

Expert Opin Ther Pat

December 2024

Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.

Introduction: Xanthine oxidase (XO) catalyzes the oxidation of both hypoxanthine and xanthine in the last two steps of the purine metabolic pathway, serving as a rate-limiting enzyme for uric acid production as well as a key target for the treatment of gout and other hyperuricemia-related conditions.

Areas Covered: This paper reviews XO inhibitors in patents from 2021 to the present. We summarize in detail the structural classes and characteristics, in vitro and in vivo biological results, and structure‒activity relationships of synthetic inhibitors, as well as the sources, specific structures, research methods, and biological activities of XO inhibitors from natural products.

View Article and Find Full Text PDF

Background: Extracellular vesicles (EVs) are essential for cell-to-cell communication because they transport functionally active molecules, including proteins, RNA, and lipids, from secretory cells to nearby or distant target cells. Seminal plasma contains a large number of EVs (sEVs) that are phenotypically heterogeneous. The aim of the present study was to identify the RNA species contained in two subsets of porcine sEVs of different sizes, namely small sEVs (S-sEVs) and large sEVs (L-sEVs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!