Vibrio parahaemolyticus has been recognized as the causal agent of early mortality syndrome and is currently considered an emerging shrimp disease causing losses of millions in the aquaculture industry. Integral membrane proteins are widely recognized as pathogenicity factors involved in essential mechanisms for V. parahaemolyticus infection, which makes them attractive as therapeutic targets. However, their physico-chemical properties and weak expression has resulted in under-representation of these proteins in conventional bottom-up proteomics, making integral membrane proteomics a challenging task. Integral membrane proteins from a bacterial strain isolated from the hepatopancreases of white shrimp with early mortality syndrome and identified by 16S rRNA sequencing as V. parahaemolyticus and an ATCC strain that is pathogenic for humans were obtained by a sequential extraction method and subjected to relative quantification and identification by isobaric Tags for Relative and Absolute Quantitation. A homology database search resulted in identification of more than two hundred proteins, 35 of which are recognized as pathogenic factors showed statistically significant differential accumulation between the strains. These proteins are mainly associated with adherence, secretion systems, cell division, transport, lysogenization, movement and virulence. Identification of pathogenicity-related proteins in V. parahaemolyticus provides valuable information for developing strategies based on molecular mechanisms that inhibit these proteins, which may be useful therapeutic targets for assisting the shrimp and aquaculture industry.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1348-0421.12556DOI Listing

Publication Analysis

Top Keywords

integral membrane
16
membrane proteins
12
proteins
8
proteins associated
8
vibrio parahaemolyticus
8
early mortality
8
mortality syndrome
8
aquaculture industry
8
proteins recognized
8
therapeutic targets
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!