Low molecular weight (LMW) polycyclic aromatic hydrocarbons (PAH) are the most abundant PAHs environmentally, occupationally, and are in cigarette smoke; however, little is known about their carcinogenic potential. We hypothesized that LMW PAHs act as co-carcinogens in the presence of a known carcinogen (benzo[a]pyrene (B[a]P)) in a mouse non-tumorigenic type II cell line (C10 cells). Gap junctions are commonly suppressed and inflammation induced during tumor promotion, while DNA-adduct formation is observed during the initiation stage of cancer. We used these endpoints together as markers of carcinogenicity in these lung adenocarcinoma progenitor cells. LMW PAHs (1-methylanthracene and fluoranthene, 1-10 µM total in a 1:1 ratio) were used based on previous studies as well as B[a]P (0-3 µM) as the classic carcinogen; non-cytotoxic doses were used. B[a]P-induced inhibition of gap junctional intercellular communication (GJIC) was observed at low doses and further reduced in the presence of the LMW PAH mixture (P < 0.05), supporting a role for GJIC suppression in cancer development. Benzo[a]pyrene diol-epoxide (BPDE)-DNA adduct levels were significantly induced in B[a]P-treated C10 cells and additionally increased with the LMW PAH mixture (P < 0.05). Significant increases in cyclooxygenase (Cox-2) were observed in response to the B[a]P/LMW PAH mixture combinations. DNA adduct formation coincided with the inhibition of GJIC and increase in Cox-2 mRNA expression. Significant cytochrome p4501b1 increases and connexin 43 decreases in gene expression were also observed. These studies suggest that LMW PAHs in combination with B[a]P can elicit increased carcinogenic potential. Future studies will further address the mechanisms of co-carcinogenesis driving these responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5866845 | PMC |
http://dx.doi.org/10.1007/s00204-017-2124-5 | DOI Listing |
J Am Chem Soc
January 2025
Philipps-Universität Marburg, Fachbereich Chemie, Hans-Meerwein-Str. 4, 35032 Marburg, Germany.
Acenes are an important class of polycyclic aromatic hydrocarbons that have gained considerable attention from chemists, physicists, and material scientists, due to their exceptional potential for organic electronics. They serve as an ideal platform for studying the physical and chemical properties of sp carbon frameworks in the one-dimensional limit and also provide a fertile playground to explore magnetism in graphenic nanostructures due to their zigzag edge topology. While higher acenes up to tridecacene have been successfully generated by means of on-surface synthesis, it is imperative to extend their synthesis toward even longer homologues to comprehensively understand the evolution of their electronic ground state.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Arctic and Marine Biology, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
Increased industrial offshore activities in northern waters raise the question of impact of polycyclic aromatic hydrocarbons (PAHs) on key Arctic marine species. One of these is the ecologically important polar cod (Boreogadus saida), which is the primary food source for Arctic marine mammals and seabirds. In the present work, we have conducted the first comprehensive proteomics study with this species by exploring the effects of dietary PAH exposure on the hepatic proteome, using benzo[a]pyrene (BaP) as a PAH model-compound.
View Article and Find Full Text PDFEnviron Int
January 2025
State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China; Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong 999077, China.
Despite the ubiquity and complexity of atmospheric polycyclic aromatic compounds (PACs), many of these compounds are largely unknown and lack sufficient toxicity data for comprehensive risk assessments. In this study, nontarget screening assisted by in-house and self-developed spectra databases was, therefore, employed to identify PACs in atmospheric particulate matter collected from multiple outdoor settings. Additionally, absorption, distribution, metabolism, excretion, and toxicity properties were evaluated to indicate PAC's overall abilities to cause adverse outcomes and incorporated into a novel health risk assessment model to assess their inhalation risks.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemistry, Anhui University, Hefei 230601, P. R. China.
Despite being studied for almost two centuries, aromaticity has always been a controversial concept. We previously proposed a unified aromatic rule for π-conjugated systems by two-dimensional (2D) superatomic-molecule theory, where benzenoid rings are treated as period 2 2D superatoms (3π-N, 4π-O, 5π-F, 6π-Ne) and, further, bond to form 2D superatomic molecules. Herein, to build a 2D periodic table, we further extend the theory to period 3 (7π-P, 8π-S, 9π-Cl, 10π-Ar) and period 1 (1π-H, 2π-He) elements.
View Article and Find Full Text PDFChemistry
January 2025
Okayama Daigaku Daigakuin Shizen Kagaku Kenkyuka, Division of Applied Chemistry, JAPAN.
The Scholl reaction has been used to synthesize a variety of polycyclic aromatic hydrocarbons, where 1,2-aryl shifts have sometimes occurred to yield unique rearrangement products. However, such 1,2-aryl shifts are often uncontrollable, and the selective and divergent synthesis with or without rearrangement is desired. Here, we achieved the control of the rearrangement in the Scholl reaction of carbazoles by the N-substituents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!