Previous research on the equine major histocompatibility complex (MHC) demonstrated strong correlations between haplotypes defined by polymorphic intra-MHC microsatellites and haplotypes defined using classical serology. Here, we estimated MHC diversity in a sample of 124 Arabian horses from an endangered strain native to Iran (Persian Asil Arabians), using a validated 10-marker microsatellite panel. In a group of 66 horses related as parent-offspring pairs or half-sibling groups, we defined 51 MHC haplotypes, 49 of which were new. In 47 of the remaining 58 unrelated horses, we could assign one previously identified MHC haplotype, and by default, we gave provisional haplotype status to the remaining constellation of microsatellite alleles. In these horses, we found 21 haplotypes that we had previously defined and 31 provisional haplotypes, two of which had been identified in an earlier study. This gave a total of 78 new MHC haplotypes. The final 11 horses were MHC heterozygotes that we could not phase using information from any of the previously validated or provisional haplotypes. However, we could determine that these horses carried a total of 22 different undefined haplotypes. In the overall population sample, we detected three homozygous horses and one maternally inherited recombinant from 21 informative segregations. Virtually all of the horses tested were MHC heterozygotes, and most unrelated horses (98%) were heterozygous for rare microsatellite-defined haplotypes found less than three times in the sampled horses. This is evidence for a very high level of MHC haplotype variation in the Persian Asil Arabian horse.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00251-017-1039-x | DOI Listing |
Genes (Basel)
November 2024
Department of Biochemistry, Molecular Biology III and Immunology, School of Medicine, University of Granada, 18016 Granada, Spain.
Major histocompatibility complex (MHC) class-I molecules (or Human Leucocyte Antigen class-I) play a key role in adaptive immunity against cancer. They present specific tumor neoantigens to cytotoxic T cells and provoke an antitumor cytotoxic response. The total or partial loss of HLA molecules can inhibit the immune system's ability to detect and destroy cancer cells.
View Article and Find Full Text PDFBMC Immunol
January 2025
Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France.
Introduction: We have reanalyzed the genomic data from the International Collaboration for the Genomics of HIV (ICGH), focusing on HIV-1 Elite Controllers (EC).
Methods: A genome-wide association study (GWAS) was performed, comparing 543 HIV-1 EC individuals with 3,272 uninfected controls (CTR) of European ancestry. 8 million single nucleotide polymorphisms (SNPs) and HLA class I and class II gene alleles were imputed to compare EC and CTR.
Vet Res
December 2024
National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
MHC B2 haplotype chickens have been reported to induce strong immune response against various avian pathogens. However, little is known about the CD8T-cell epitope with MHC B2-restricted on subgroup J avian leukosis virus (ALV-J). In this study, we explored the ALV-J-induced cellular immune response in B2 haplotype chickens in vivo.
View Article and Find Full Text PDFVet Res
December 2024
National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
The duck CD8 T-cell response effectively defends against H5N1 highly pathogenic avian influenza virus (HPAIV) infection, but the recognized peptide is rarely identified. Here, we found that the ratio of CD8 T cells and the expression of IFN-γ and cytotoxicity-associated genes, including granzyme A/K, perforin and IL2, at 7 days post-infection in peripheral blood mononuclear cells (PBMCs) from B1 haplotype ducks significantly increased in the context of defending against H5N1 AIV infection in vivo. Moreover, similar results were observed in cultured and sorted H5N1 AIV-stimulated duck CD8 T cells in vitro.
View Article and Find Full Text PDFDev Biol
December 2024
University of Edinburgh, Institute for Immunology and Infection Research, Edinburgh, United Kingdom. Electronic address:
Chickens are renowned as a model for embryogenesis but have also been responsible for crucial advances in virology, cancer research and immunology. However, chickens are best known as a major source of animal protein for human nutrition, with roughly 80 billion chickens alive each year supplying meat and eggs, the vast majority part of a global poultry industry. As a result, avian immunology been studied intensively for over 60 years, and it has become clear that a major genetic locus in chickens determining resistance to infectious disease and response to vaccines is the major histocompatibility complex (MHC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!