The North-East Corridor (NEC) Testbed project is the 3rd of three NIST (National Institute of Standards and Technology) greenhouse gas emissions testbeds designed to advance greenhouse gas measurements capabilities. A design approach for a dense observing network combined with atmospheric inversion methodologies is described. The Advanced Research Weather Research and Forecasting Model with the Stochastic Time-Inverted Lagrangian Transport model were used to derive the sensitivity of hypothetical observations to surface greenhouse gas emissions (footprints). Unlike other network design algorithms, an iterative selection algorithm, based on a -means clustering method, was applied to minimize the similarities between the temporal response of each site and maximize sensitivity to the urban emissions contribution. Once a network was selected, a synthetic inversion Bayesian Kalman filter was used to evaluate observing system performance. We present the performances of various measurement network configurations consisting of differing numbers of towers and tower locations. Results show that an overly spatially compact network has decreased spatial coverage, as the spatial information added per site is then suboptimal as to cover the largest possible area, whilst networks dispersed too broadly lose capabilities of constraining flux uncertainties. In addition, we explore the possibility of using a very high density network of lower cost and performance sensors characterized by larger uncertainties and temporal drift. Analysis convergence is faster with a large number of observing locations, reducing the response time of the filter. Larger uncertainties in the observations implies lower values of uncertainty reduction. On the other hand, the drift is a bias in nature, which is added to the observations and, therefore, biasing the retrieved fluxes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5695685 | PMC |
http://dx.doi.org/10.1007/s00376-017-6094-6 | DOI Listing |
Sci Rep
January 2025
Department of Physics and Mathematics, University of Alcalá, Alcalá de Henares, Spain.
Since 1999, every report released by the International Panel on Climate Change has advocated a decrease in the greenhouse gas emissions associated with aviation in order to preserve the current climate. This study used a two variable differential equations model with a non-linear control term to address several aspects of the emissions stabilization issue. By optimizing the control term parameter, several management alternatives can be obtained based on the properties of the phase plane of the model solutions, as identified by a stability analysis.
View Article and Find Full Text PDFSci Rep
January 2025
College of Civil Engineering, Department of Bridge Engineering, Tongji University, Shanghai, 200092, China.
Addressing environmental challenges such as pollution and resource depletion requires innovative industrial and municipal waste management approaches. Cement production, a significant contributor to greenhouse gas emissions, highlights the need for eco-friendly building materials to combat global warming and promote sustainability. This study evaluates the simultaneous use of Sugarcane Bagasse Ash (SCBA) and Stone Dust (SD) as partial replacements by volume for cement and sand, respectively, at varying ratios in eco-strength concrete mixes designed for 28 MPa (ES-28) and 34 MPa (ES-34), emphasizing their economic and environmental benefits.
View Article and Find Full Text PDFJ Dairy Sci
January 2025
Department of Applied Animal Science & Welfare, Swedish University of Agricultural Sciences (SLU), Box 7024, 753 23 Uppsala, Sweden.
Methane emissions from ruminant digestion contribute significantly to global anthropogenic greenhouse gas emissions. Members of the phylum Rhodophyta (red algae), particularly Asparagopsis sp., have shown promising results in reducing methane emissions in ruminants, due to their high content of halogenated methane analog compounds.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Civil and Smart Construction Engineering, Shantou University, Shantou, Guangdong 515063, China. Electronic address:
Landfill gas (LFG) has become the second-largest anthropogenic source of methane (CH) emissions globally. CH is the second most significant greenhouse gas after carbon dioxide (CO), thus it is crucial to mitigate the methane emission of landfills. The soil in landfill cover layers is rich in methane-oxidizing bacteria (MOB), which use CH as their sole carbon and energy source.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Université Paris Dauphine - PSL, UMR, CNRS 8007, LEDa-CGEMP, 75016, Paris, France.
Recent studies outline markedly different possible decarbonization pathways for civil aviation by 2050. This paper examines how the key assumptions retained in these scenarios (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!