Predicting ecological responses in a changing ocean: the effects of future climate uncertainty.

Mar Biol

School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ UK.

Published: November 2017

Predicting how species will respond to climate change is a growing field in marine ecology, yet knowledge of how to incorporate the uncertainty from future climate data into these predictions remains a significant challenge. To help overcome it, this review separates climate uncertainty into its three components (scenario uncertainty, model uncertainty, and internal model variability) and identifies four criteria that constitute a thorough interpretation of an ecological response to climate change in relation to these parts (awareness, access, incorporation, communication). Through a literature review, the extent to which the marine ecology community has addressed these criteria in their predictions was assessed. Despite a high awareness of climate uncertainty, articles favoured the most severe emission scenario, and only a subset of climate models were used as input into ecological analyses. In the case of sea surface temperature, these models can have projections unrepresentative against a larger ensemble mean. Moreover, 91% of studies failed to incorporate the internal variability of a climate model into results. We explored the influence that the choice of emission scenario, climate model, and model realisation can have when predicting the future distribution of the pelagic fish, . Future distributions were highly influenced by the choice of climate model, and in some cases, internal variability was important in determining the direction and severity of the distribution change. Increased clarity and availability of processed climate data would facilitate more comprehensive explorations of climate uncertainty, and increase in the quality and standard of marine prediction studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5680362PMC
http://dx.doi.org/10.1007/s00227-017-3239-1DOI Listing

Publication Analysis

Top Keywords

climate uncertainty
16
climate
12
climate model
12
future climate
8
climate change
8
marine ecology
8
climate data
8
emission scenario
8
internal variability
8
uncertainty
7

Similar Publications

Background: Oncology nurses have a vital role in providing care for individuals with cancer. Ethical dilemmas arise for oncology nurses caring for these patients. Nurses experience moral distress when work conflicts with personal beliefs, leading to inappropriate responses or uncertainty about ethics.

View Article and Find Full Text PDF

The significant role of vegetation activity in regulating wetland methane emission in China.

Environ Res

January 2025

Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Earth Critical Zone and Flux Research Station of Xing'an Mountains, Chinese Academy of 15 Sciences, Daxing'anling 165200, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 10049, China. Electronic address:

Accurate quantifying of methane (CH) emissions is a critical aspect of current research on regional carbon budgets. However, due to limitations in observational data, research methodologies, and an incomplete understanding of process mechanisms, significant uncertainties persist in the assessment of wetland CH fluxes in China. In this study, we developed a machine learning model by integrating measured CH fluxes with related environmental data to produce a high-resolution (1 km) dataset of CH fluxes from China's wetlands for the period 2000-2020.

View Article and Find Full Text PDF

Globally, the effects of climate change are becoming more pronounced. Simultaneously, concerns associated with climate change effects have garnered widespread attention. The motive of this study is to know about the prominent antecedents of climate abnormalities in Pakistan, which may lead to economic abnormality and instability.

View Article and Find Full Text PDF

Critical loads (CLs) are frequently used to quantify terrestrial ecosystem impacts from nitrogen (N) deposition using ecological responses such as the growth and mortality of tree species. Typically, CLs are reported as a single value, with uncertainty, for an indicator across a species' entire range. Mediating factors such as climate and soil conditions can influence species' sensitivity to N, but the magnitudes of these effects are rarely calculated explicitly.

View Article and Find Full Text PDF

Over the last 20 years, we have dramatically improved hydrometeorological data including isotopes, but are we making the most of this data? Stable isotopes of oxygen and hydrogen in the water molecule (stable water isotopes - SWI) are well known tracers of the global hydrological cycle producing critical climate science. Despite this, stable water isotopes are not explicitly included in influential climate reports (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!