Generation of an osteoblast-based artificial niche that supports in vitro B lymphopoiesis.

Exp Mol Med

Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea.

Published: November 2017

B lymphocytes are produced from hematopoietic stem cells (HSCs) through the highly ordered process of B lymphopoiesis, which is regulated by a complex network of cytokines, chemokines and cell adhesion molecules derived from the hematopoietic niche. Primary osteoblasts function as an osteoblastic niche (OBN) that supports in vitro B lymphopoiesis. However, there are significant limitations to the use of primary osteoblasts, including their relative scarcity and the consistency and efficiency of the limited purification and proliferation of these cells. Thus, development of a stable osteoblast cell line that can function as a biomimetic or artificial OBN is necessary. In this study, we developed a stable osteoblastic cell line, designated OBN4, which functions as an osteoblast-based artificial niche that supports in vitro B lymphopoiesis. We demonstrated that the production of a B220 cell population from Lineage (Lin) Sca-1 c-Kit hematopoietic stem and progenitor cells (HSPCs) was increased ~1.7-fold by OBN4 cells relative to production by primary osteoblasts and OP9 cells in coculture experiments. Consistently, OBN4 cells exhibited the highest production of B220 IgM cell populations (6.7±0.6-13.6±0.6%) in an IL-7- and stromal cell-derived factor 1-dependent manner, with higher production than primary osteoblasts (3.7±0.5-6.4±0.6%) and OP9 cells (1.8±0.6-3.9±0.5%). In addition, the production of B220 IgM IgD cell populations was significantly enhanced by OBN4 cells (15.4±1.1-18.9±3.2%) relative to production by primary osteoblasts (9.5±0.6-14.6±1.6%) and OP9 cells (9.1±0.5-10.3±1.8%). We conclude that OBN4 cells support in vitro B lymphopoiesis of Lin Sca-1 c-Kit HSPCs more efficiently than primary osteoblasts or OP9 stromal cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5704192PMC
http://dx.doi.org/10.1038/emm.2017.189DOI Listing

Publication Analysis

Top Keywords

primary osteoblasts
24
vitro lymphopoiesis
16
obn4 cells
16
supports vitro
12
production b220
12
production primary
12
op9 cells
12
cells
11
osteoblast-based artificial
8
artificial niche
8

Similar Publications

NEAT1 regulates BMSCs aging through disruption of FGF2 nuclear transport.

Stem Cell Res Ther

January 2025

College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.

Background: The aging of bone marrow mesenchymal stem cells (BMSCs) impairs bone tissue regeneration, contributing to skeletal disorders. LncRNA NEAT1 is considered as a proliferative inhibitory role during cellular senescence, but the relevant mechanisms remain insufficient. This study aims to elucidate how NEAT1 regulates mitotic proteins during BMSCs aging.

View Article and Find Full Text PDF

Ossifying fibroma (OF) is a slow-growing, expansive, and benign fibro-osseous neoplasm that is rare in cattle. It mainly affects the craniofacial bones, especially the mandible. Here, we report 2 cases of mandibular OF in Nelore and mixed-breed steers with enlarged masses in the rostral portion of the mandible.

View Article and Find Full Text PDF

The periodontal ligament (PDL) is a connective tissue, and PDL cells have a potential to differentiate into cementoblasts, osteoblasts, and gingival fibroblasts. This study investigated whether transcription factor c-Myb could induce differentiation of PDL cells for periodontal regeneration. PDL cells were isolated from extracted teeth and cultured.

View Article and Find Full Text PDF

Therapeutic Potential of Targeting Ferroptosis in Periprosthetic Osteolysis Induced by Ultra-High-Molecular-Weight Polyethylene Wear Debris.

Biomedicines

January 2025

Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan.

Periprosthetic osteolysis is the primary cause of arthroplasty failure in the majority of patients. Mechanistically, wear debris released from the articulating surfaces of a prosthesis initiates local inflammation and several modes of regulated cell death programs, such as ferroptosis, which represents a promising therapeutic target in various chronic inflammatory diseases. Thus, the current study aimed at exploring the therapeutic potential of targeting ferroptosis in a polyethylene-wear-debris-induced osteolysis model.

View Article and Find Full Text PDF

Osteoblastic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells on P3HT Thin Polymer Film.

J Funct Biomater

January 2025

Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.

Bone defects restoration has always been an arduous challenge in the orthopedic field due to the limitations of conventional grafts. Bone tissue engineering offers an alternative approach by using biomimetic materials, stem cells, and growth factors that are able to improve the regeneration of bone tissue. Different biomaterials have attracted great interest in BTE applications, including the poly(3-hexylthiofene) (P3HT) conductive polymer, whose primary advantage is its capability to provide a native extracellular matrix-like environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!