Quantum entanglement in magnetic materials is expected to yield a quantum spin liquid (QSL), in which strong quantum fluctuations prevent magnetic ordering even at zero temperature. This topic has been one of the primary focuses of condensed-matter science since Anderson first proposed the resonating valence bond state in a certain spin-1/2 frustrated magnet in 1973. Since then, several candidate materials featuring frustration, such as triangular and kagome lattices, have been reported to exhibit liquid-like behavior. However, the mechanisms that stabilize the liquid-like states have remained elusive. Here, we present a QSL state in a spin-1/2 honeycomb lattice with randomness in the exchange interaction. That is, we successfully introduce randomness into the organic radial-based complex and realize a random-singlet (RS) state (or valence bond glass). All magnetic and thermodynamic experimental results indicate the liquid-like behaviors, which are consistent with those expected in the RS state. Our results suggest that the randomness or inhomogeneity in the actual systems stabilize the RS state and yield liquid-like behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5701036PMC
http://dx.doi.org/10.1038/s41598-017-16431-0DOI Listing

Publication Analysis

Top Keywords

quantum spin
8
spin liquid
8
honeycomb lattice
8
valence bond
8
state spin-1/2
8
liquid-like behavior
8
state
5
randomness-induced quantum
4
liquid honeycomb
4
lattice quantum
4

Similar Publications

Half-Metallic Antiferromagnetic 2D Nonlayered CrSe Nanosheets.

ACS Nano

December 2024

SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea.

Half-metallic magnetism, characterized by metallic behavior in one spin direction and semiconducting or insulating behavior in the opposite spin direction, is an intriguing and highly useful physical property for advanced spintronics because it allows for the complete realization of 100% spin-polarized current. Particularly, half-metallic antiferromagnetism is recognized as an excellent candidate for the development of highly efficient spintronic devices due to its zero net magnetic moment combined with 100% spin polarization, which results in lower energy losses and eliminates stray magnetic fields compared to half-metallic ferromagnets. However, the synthesis and characterization of half-metallic antiferromagnets have not been reported until now as the theoretically proposed materials require a delicate and challenging approach to fabricate such complex compounds.

View Article and Find Full Text PDF

Topological semimetals have recently garnered widespread interest in the quantum materials research community due to their symmetry-protected surface states with dissipationless transport which have potential applications in next-generation low-power electronic devices. One such material, [Formula: see text], exhibits Dirac nodal arcs and although the topological properties of single crystals have been investigated, there have been no reports in crystalline thin film geometry. We examined the growth of [Formula: see text] heterostructures on a range of single crystals by optimizing the electron beam evaporation of Pt and Sn and studied the effect of vacuum thermal annealing on phase and crystallinity.

View Article and Find Full Text PDF

Quantum computers promise a qualitative speedup in solving a broad spectrum of practical optimization problems. The latter can be mapped onto the task of finding low-energy states of spin glasses, which is known to be exceedingly difficult. Using D-Wave's 5000-qubit quantum processor, we demonstrate that a recently proposed iterative cyclic quantum annealing algorithm can find deep low-energy states in record time.

View Article and Find Full Text PDF

Topological Insulators (TIs) are promising platforms for Quantum Technology due to their topologically protected surface states (TSS). Plasmonic excitations in TIs are especially interesting both as a method of characterisation for TI heterostructures, and as potential routes to couple optical and spin signals in low-loss devices. Since the electrical properties of the TI surface are critical, tuning TI surfaces is a vital step in developing TI structures that can be applied in real world plasmonic devices.

View Article and Find Full Text PDF

Frustrated Magnetism and Spin Anisotropy in a Buckled Square Net YbTaO.

Inorg Chem

December 2024

School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

The interplay between quantum effects from magnetic frustration, low-dimensionality, spin-orbit coupling, and crystal electric field in rare-earth materials leads to nontrivial ground states with unusual magnetic excitations. Here, we investigate YbTaO, which hosts a buckled square net of Yb ions with = 1/2 moments. The observed Curie-Weiss temperature is about -1 K, implying an antiferromagnetic coupling between the Yb moments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!