Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Photodynamic therapy (PDT) may have topical indications. In those cases it is important for a topical photosensitizer to penetrate into the tissue to which it has been applied. This study aimed to compare the penetration of two different concentrations of erythrosine into intact and in vitro decayed dentin samples.
Methods: This in vitro study evaluated erythrosine (0.3 and 5%) penetration into sound (intact) and decayed dentin. A total of 11 dentin discs were prepared and divided into two equal halves, in order to keep one half sound while the other half was submitted to sterilization and an in vitro demineralization model for 5 days. Before erythrosine application, the organic and inorganic composition of all samples was evaluated by Fourier Transform Raman spectroscopy, and after erythrosine application for 30 min, the penetration depth was determined by Photoacoustic spectroscopy technique.
Results: The results indicated that 0.3% erythrosine showed a higher penetration depth into sound dentin (p = 0.002); and 5% erythrosine higher penetration into decayed dentin (p < 0.001). However considering clinical parameters, no statistically significant difference was found between any of the conditions tested.
Conclusions: Erythrosine demonstrated ability to penetrate into dentin, irrespective of sound or decayed condition. Photoacoustic spectroscopy can be considered a method for estimating the penetration into hard tissues, and in conjunction with Raman spectroscopy, these are effective methods for evaluating the spectral response of dentin. Considering that erythrosine is capable of penetrating into decayed dentin, clinical trials are needed to test the effectiveness of this photosensitizer in Photodynamic therapy and Antimicrobial Photodynamic therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pdpdt.2017.11.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!