TGF-β1/Smad2/3/Foxp3 signaling is required for chronic stress-induced immune suppression.

J Neuroimmunol

Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States. Electronic address:

Published: January 2018

Depending on the duration and severity, psychological tension and physical stress can enhance or suppress the immune system in both humans and animals. Although it has been established that chronic stress exerts a significant suppressive effect on immune function, the mechanisms by which affects immune responses remain elusive. By employing an in vivo murine system, we revealed that TGF-β1/Smad2/3/Foxp3 axis was remarkably activated following chronic stress. Furthermore, TLR9 and p38 MAPK played a critical role in the activation of TGF-β1/Smad2/3/Foxp3 signaling cascade. Moreover, inhibition of TGF-β1/Smad2/3/Foxp3 or p38 significantly attenuated chronic stress-induced lymphocyte apoptosis and apoptosis-related proteins, as well as the differentiation of T regulatory cells in spleen. Interestingly, disequilibrium of pro-inflammatory and anti-inflammatory cytokines balance caused by chronic stress was also rescued by blocking TGF-β1/Smad2/3/Foxp3 axis. These findings yield insight into a novel mechanism by which chronic stress modulates immune functions and identifies new targets for the development of novel anti-immune suppressant medications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5756116PMC
http://dx.doi.org/10.1016/j.jneuroim.2017.11.005DOI Listing

Publication Analysis

Top Keywords

chronic stress
16
tgf-β1/smad2/3/foxp3 signaling
8
chronic stress-induced
8
tgf-β1/smad2/3/foxp3 axis
8
chronic
6
tgf-β1/smad2/3/foxp3
5
immune
5
stress
5
signaling required
4
required chronic
4

Similar Publications

Objectives: Due to the increasingly faster pace of life and responsibilities, stress has become an integral part of daily life. Every year, numerous social campaigns in the media raise the issue of increasing alcohol consumption. Endometriosis is a chronic, causally incurable, estrogen-dependent and inflammatory gynecological disorder, described as presence of ectopic endometrial tissue outside the uterine cavity.

View Article and Find Full Text PDF

Adipokines regulate the development and progression of MASLD through organellar oxidative stress.

Hepatol Commun

February 2025

Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), which is increasingly being recognized as a leading cause of chronic liver pathology globally, is increasing. The pathophysiological underpinnings of its progression, which is currently under active investigation, involve oxidative stress. Human adipose tissue, an integral endocrine organ, secretes an array of adipokines that are modulated by dietary patterns and lifestyle choices.

View Article and Find Full Text PDF

Mercury is a pervasive global pollutant, with primary anthropogenic sources including mining, industrial processes, and mercury-containing products such as dental amalgams. These sources release mercury into the environment, where it accumulates in ecosystems and enters the food chain, notably through bioamplification in marine life, posing a risk to human health. Dental amalgams, widely used for over a century, serve as a significant endogenous source of inorganic mercury.

View Article and Find Full Text PDF

The recent study exploring the bidirectional associations between gallstone disease, non-alcoholic fatty liver disease, and kidney stone disease highlights a critical concern in chronic disease management. Given the rising global prevalence of these conditions, understanding their interconnections is essential. The study emphasizes the importance of shared risk factors, such as obesity, type 2 diabetes, dyslipidemia, and oxidative stress, and calls for multidisciplinary screening strategies.

View Article and Find Full Text PDF

Background: The complement system is locally activated after joint injuries and leads to the deposition of the terminal complement complex (TCC). Sublytic TCC deposition is associated with phenotypical alterations of human articular chondrocytes (hAC) and enhanced release of inflammatory cytokines. Chronic inflammation is a known driver of chondrosenescence in osteoarthritis (OA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!