Today, intratumoural heterogeneity has been recognised as one of the main causes of cancer treatment failure and drug resistance development through which multiple mechanisms are simultaneously involved. From the broad diversity of cells presented in tumour microenvironment, owing to their proliferative potential and longevity, cancer stem cells (CSCs), are the main cell subpopulation involved in tumour development, propagation, metastatic dissemination and induction of intratumoural heterogeneity. Accordingly, selective targeting and eradication of CSCs may represent a promising approach for cancer therapy and evading drug resistance development. Nanotechnology is an attractive outgrowing field in medicine due to its promising capabilities in solving several obstacles associated with conventional chemotherapy agents including poor solubility, lack of selectivity and high systemic toxicity. Accordingly, multiple types of nanocarriers have been successfully developed for improving selective delivery and reducing non-selective toxicities of CSC-specific chemotherapy agents. In Current review, we mostly focus on examining the role of CSCs in development of intratumoral heterogeneity and introducing recently developed nano delivery systems for more efficient targeting and eradication of them.

Download full-text PDF

Source
http://dx.doi.org/10.1080/1061186X.2017.1405426DOI Listing

Publication Analysis

Top Keywords

eradication cscs
8
promising approach
8
intratumoural heterogeneity
8
drug resistance
8
resistance development
8
targeting eradication
8
chemotherapy agents
8
functionalised nanomaterials
4
nanomaterials eradication
4
cscs
4

Similar Publications

Nonthermal Plasma Boosted Dichloroacetate Induces Metabolic Shifts to Combat Glioblastoma CSCs via Oxidative Stress.

Free Radic Biol Med

December 2024

Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea. Electronic address:

Glioblastoma (GBM) remains a formidable clinical challenge, with cancer stem cells (CSCs) contributing to treatment resistance and tumor recurrence. Conventional treatments often fail to eradicate these CSCs characterized by enhanced resistance to standard therapies through metabolic plasticity making them key targets for novel treatment approaches. Addressing this challenge, this study introduces a novel combination therapy of dichloroacetate (DCA), a metabolic modulator and nonthermal plasma to induce oxidative stress in glioblastomas.

View Article and Find Full Text PDF

Eradication of Therapy-Resistant Cancer Stem Cells by Novel Telmisartan Derivatives.

J Med Chem

January 2025

Department of Internal Medicine V, Hematology and Oncology, Tyrolean Cancer Research Institute (TKFI), Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck 6020, Austria.

The present structure-activity relationship study investigates the development of novel chemosensitizers targeting therapy-resistant cancer stem cells (CSCs). We used 4'-((2-propyl-1-benzo[]imidazole-1-yl)methyl)-[1,1'-biphenyl]-2-carboxylic acid, derived from the angiotensin II type 1 receptor blocker telmisartan, as a lead structure, demonstrating that the biphenyl moiety is essential for chemosensitizing activity. Introducing a methyl carboxylate or carboxamide instead of the COOH-group significantly enhanced this effect, leading to the development of highly potent compounds.

View Article and Find Full Text PDF

Tumor-mimetic hydrogel stiffness regulates cancer stemness properties in H-Ras-transformed cancer model cells.

Biochem Biophys Res Commun

January 2025

Graduate School of Life Science, Hokkaido University, N21 W11, Kita-ku, Sapporo, 001-0021, Japan; Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21 W10, Kita-ku, Sapporo, 001-0021, Japan. Electronic address:

Article Synopsis
  • Cancer stem cells (CSCs) contribute to therapy resistance and cancer recurrence, making it essential to develop treatment strategies that specifically target CSCs.
  • Previous research showed that glioblastoma cells can be transformed into CSCs when cultured on double-network hydrogels, simulating tumor stiffness.
  • In this study, H-Ras-transformed fibroblasts cultured on a hydrogel with 10 kPa stiffness exhibited increased expression of stemness markers, suggesting that the stiffness of tumor tissues plays a crucial role in the generation of CSCs through certain cellular mechanisms.
View Article and Find Full Text PDF

RANKL regulates differentially breast cancer stem cell properties through its RANK and LGR4 receptors.

Biochim Biophys Acta Mol Cell Res

December 2024

Innovation and Precision Medicine Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City C.P. 14610, Mexico. Electronic address:

Background: Breast cancer stem cells (BCSC) are a subpopulation responsible for cancer resistance and relapse. The receptor activator of nuclear factor kappa-Β ligand (RANKL) is a cytokine capable of activating RANK and LGR4 receptors. RANKL/RANK signaling maintains the self-renewal of BCSCs, however, the effect of RANKL via LGR4 remains unclear.

View Article and Find Full Text PDF

Aims: To develop a novel nanomicelle system to target and eradicate CD133-expressing lung cancer stem cells (CSCs) while imaging lung cancer.

Methods: Averatinib nanomicelles with CD133 aptamers incorporated with gadolinium imaging reagents (M-Afa&Gd-CD133) were synthesized. The anticancer and imaging activities of M-Afa&Gd-CD133 were evaluated both in vitro and in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!