Structures and mechanisms in clay nanopore trapping of structurally-different fluoroquinolone antimicrobials.

J Colloid Interface Sci

Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA; Soil and Crop Sciences, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, USA. Electronic address:

Published: March 2018

Smectite clay nanoparticles are implicated in the retention of antimicrobials within soils and sediments; these clays are also inspected as drug carriers in physiological systems. Cation exchange is considered the primary adsorption mechanism of antimicrobials within smectite nanopores. However, a dual role of acid-base chemistry and adsorptive structures is speculated by recent studies. Using the prototypical smectite clay montmorillonite, we employed a combination of X-ray diffraction (XRD), nuclear magnetic resonance, attenuated total reflectance-Fourier transform infrared spectroscopy, and molecular dynamics simulations to investigate the interlayer nanopore trapping of two structurally-different fluoroquinolone (FQ) antimicrobials with similar acid-base chemistry: ciprofloxacin (a first-generation FQ) and moxifloxacin (a third-generation FQ). Greater sorption at pH 5.0 than at pH 7.0 for both FQs was consistent with cation-exchange of positively-charged species. However, the clay exhibited a near twofold higher sorption capacity for moxifloxacin than for ciprofloxacin. This difference was shown by the XRD data to be accompanied by enhanced trapping of moxifloxacin within the clay interlayers. Using the XRD-determined nanopore sizes, we performed molecular dynamics simulations of thermodynamically-favorable model adsorbates, which revealed that ciprofloxacin was adsorbed parallel to the clay surface but moxifloxacin adopted a tilted conformation across the nanopore. These conformations resulted in more slowly-exchanged than quickly-exchanged Na complexes with ciprofloxacin compared with moxifloxacin. These different Na populations were also captured by Na nuclear magnetic resonance. Furthermore, the simulated adsorbates uncovered different complexation interactions that were corroborated by infrared spectroscopy. Therefore, beyond acid-base chemistry, our findings imply that distinct adsorbate structures control antimicrobial trapping within clay nanopores, which can promote persistence in environmental matrices and stable delivery in biological systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2017.11.020DOI Listing

Publication Analysis

Top Keywords

acid-base chemistry
12
nanopore trapping
8
trapping structurally-different
8
structurally-different fluoroquinolone
8
fluoroquinolone antimicrobials
8
antimicrobials smectite
8
smectite clay
8
nuclear magnetic
8
magnetic resonance
8
infrared spectroscopy
8

Similar Publications

An N,N,N-type Cu(Ⅱ) complex-catalyzed desaturation method for converting alcohols, ketones, lactones, and lactams to their α,β-unsaturated carbonyl compounds is reported. The dehydrogenation reaction can be conducted with a green terminal oxidant O2 without requiring strong acid/base or stoichiometric oxidants. The Cu(Ⅱ) complex/TEMPO/O2 system uses a non-noble catalyst, and a green terminal oxidant as well as demonstrates high activity and functional group tolerance.

View Article and Find Full Text PDF

p Matching Enables Quantum Proton Delocalization in Acid-1-Methylimidazole Binary Mixtures.

J Chem Inf Model

January 2025

Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States.

Short hydrogen bonds (SHBs), characterized by donor-acceptor heteroatom separations below 2.7 Å, are prevalent in condensed-phase systems. Recently, we identified SHBs in nonaqueous binary mixtures of acetic acid and 1-methylimidazole (MIm), where electronic and nuclear quantum effects facilitate extensive proton delocalization.

View Article and Find Full Text PDF

Background/objectives: Clofazimine (CFZ) is a Biopharmaceutics Classification System (BCS) II drug introduced in the US market in 1986 for the treatment of leprosy. However, CFZ was later withdrawn from the market due to its extremely low aqueous solubility and low absorption. In the literature, the intrinsic solubility of CFZ has been estimated to be <0.

View Article and Find Full Text PDF

Phosphorescent Sensor Based on Iridium(III) Complex with Aggregation-Induced Emission Activity for Facile Detection of Volatile Acids.

Molecules

December 2024

Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China.

Phosphorescent sensors are essential for rapid visual sensing of volatile acids, due to their profound impact on ecosystems and human health. However, solid phosphorescent materials for acid-base stimulus response are still rare, and it is important to achieve real-time monitoring of volatile acids. In order to obtain an efficient and rapid response to volatile acid stimulation, N-H and -NH substituents are introduced into an auxiliary ligand to synthesize a new cationic Ir(III) complex ().

View Article and Find Full Text PDF

Fluphenazine (FPZ) is a well-known neuroleptic that has attracted considerable scientific interest due to its biocidal, virucidal, and antitumor properties. Although methods for encapsulating and delivering FPZ to enhance its activity and reduce side effects have been developed, there is still limited knowledge about its conjugates with gold nanoparticles (AuNPs). Therefore, the aim of this research was to develop a preparation method for stable FPZ-AuNP conjugates and to investigate their physicochemical and biological properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!