A soil column study to evaluate treatment of trace elements from saline industrial wastewater.

Water Sci Technol

Department of Biological and Agricultural Engineering, Kansas State University, Seaton Hall, 920 N. 17th St., Manhattan, KS 66506, USA.

Published: November 2017

Industrial wastewater from the flue gas desulfurization (FGD) process is characterized by the presence of trace elements of concern, such as selenium (Se) and boron (B) and relatively high salinity. To simulate treatment that FGD wastewater undergoes during transport through soils in subsurface treatment systems, a column study (140-d duration) was conducted with native Kansas soil and saline FGD wastewater, containing high Se and B concentrations (170 μg/L Se and 5.3 mg/L B) and negligible arsenic (As) concentration (∼1.2 μg/L As). Se, B, and As, and dissolved organic carbon concentrations and organic matter spectroscopic properties were measured in the influent and outflow. Influent Se concentrations were reduced by only ∼half in all treatments, and results suggest that Se sorption was inhibited by high salinity of the FGD wastewater. By contrast, relative concentrations (C/C) of B in the outflow were typically <10%, suggesting that B sequestration may have been enhanced by higher salinity. Unexpected elevated As concentrations in the outflow (at >150 μg/L in the treatment with labile organic carbon addition) suggest that soils not previously known to be geogenic arsenic sources have the potential to release As to groundwater in the presence of high salinity wastewater and under reducing conditions.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2017.413DOI Listing

Publication Analysis

Top Keywords

high salinity
12
fgd wastewater
12
column study
8
trace elements
8
industrial wastewater
8
organic carbon
8
wastewater
6
soil column
4
study evaluate
4
treatment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!